Affiliation:
1. Immanuel Kant Baltic Federal University
2. P.P.Shirshov Institute of Oceanology of the Russian Academy of Science
Abstract
This work describes a method for determining the water content in sediments from the Gulf of Gdansk of the Baltic Sea, which is based on the analysis of spectral data obtained using the portable X-ray fluorescence analyzer (XRF) Olympus Vanta C. The water content calculated from the XRF spectral data showed a high correlation ( = 0.95) with those measured using the conventional method of drying to constant mass. This allows the conversion between the results obtained using the portable XRF analyzer on bulk sediments to those obtained on dried sediments. Comparison of the converted data from the portable analyzer with the results of element composition analysis performed on dried homogenized samples using the wavelength-dispersive XRF analyzer Spectroscan-Max-G and atomic absorption spectrophotometer Varian AA240FS showed high correlation coefficients for Mn, Ca, K, Zn, Pb, As and low coefficients for Fe, Co, Ti, Ni, Cu and Sr. The results of the analysis using the portable XRF spectrometer, converted to dry weight of the sediment, were used to study the distribution of Pb concentrations in the sediments of the Gulf of Gdansk. An increase in Pb content up to 60 ppm was observed in the upper part of sediment cover. This increase is likely associated with the intensification of anthropogenic activities in AD 1 and AD 1200. Maximum lead concentrations up to 124 ppm were found in near-surface sediments, likely related to the period of industrialization in the 1970s.
Publisher
Geophysical Center of the Russian Academy of Sciences
Reference29 articles.
1. Блажчишин А. И. Палеогеография и эволюция позднечетвертичного осадконакопления в Балтийском море. — Калининград : Янтарный сказ, 1998. — 160 с., Belzunce Segarra M. J., Szefer P., Wilson M. J., et al. Chemical forms and distribution of heavy metals in core sediments from the Gdańsk Basin, Baltic Sea // Polish Journal of Environmental Studies. — 2007. — Vol. 16, no. 4. — P. 505–515.
2. Емельянов Е. М., Кравцов В. А., Сивков В. В. и др. Токсичные вещества в донных осадках // Нефть и окружающая среда Калининградской области. Т. II: Море / под ред. В. В. Сивкова, Ю. С. Каджояна, О. Е. Пичужкиной и др. — Калининград : Терра Балтика, 2012. — С. 304—314., Berntsson A., Rosqvist G. C., Velle G. Late-Holocene temperature and precipitation changes in Vindelfjällen, mid-western Swedish Lapland, inferred from chironomid and geochemical data // The Holocene. — 2013. — Vol. 24, no. 1. — P. 78–92. — DOI: 10.1177/0959683613512167.
3. Ревенко А. Г. Рентгеноспектральный флуоресцентный анализ природнных материалов. — Новосибирск : Наука, 1994. — 264 с., Blazhchishin A. I. Paleogeography and evolution of Late Quaternary sedimentation in the Baltic Sea. — Kaliningrad : Yantarny skaz, 1998. — P. 160.
4. Яковлев Д. А., Радомская Т. А., Воронцов А. А. и др. Общая геохимия: учебное пособие (Изд. 2-е). — ИГУ, 2019., Borges C. S., Weindorf D. C., Nascimento D. C., et al. Comparison of portable X-ray fluorescence spectrometry and laboratory-based methods to assess the soil elemental composition: Applications for wetland soils // Environmental Technology & Innovation. — 2020. — Vol. 19. — P. 100826. — DOI: 10.1016/j.eti.2020.100826.
5. Belzunce Segarra M. J., Szefer P., Wilson M. J., et al. Chemical forms and distribution of heavy metals in core sediments from the Gdańsk Basin, Baltic Sea // Polish Journal of Environmental Studies. — 2007. — Vol. 16, no. 4. — P. 505–515., Boyle J. F., Chiverrell R. C., Schillereff D. Approaches to Water Content Correction and Calibration for XRF Core Scanning: Comparing X-ray Scattering with Simple Regression of Elemental Concentrations // Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences / ed. by I. W. Croudace, R. G. Rothwell. — Dordrecht : Springer Netherlands, 2015. — P. 373–390. — DOI: 10.1007/978-94-017-9849-5_14.