Theoretical and Experimental Modeling of Local Scale CO2 Flushing of Hydrous Rhyolitic Magma

Author:

Simakin Alexander1ORCID,Devyatova Vera1,Shiryaev Andrey2ORCID

Affiliation:

1. Institute of Experimental Mineralogy, RAS

2. Institute of Physical Chemistry and Electrochemistry named after. A.N. Frumkin RAS

Abstract

Flushing of hydrous silicic magmas with crustal carbonic fluid may be an important factor controlling the dynamics of rhyolitic eruptions. We present combined theoretical and experimental study of the interaction of carbonic fluid with a hydrous silicic melt. The process of diffusional equilibration of a CO2 bubble with a silicic melt was simulated numerically in the spherical shell approximation. The rapid water transfer from the melt to the bubble is followed by a slower diffusion of CO2 into the melt. The water distribution in the melt becomes almost uniform over a period proportional to the diffusional unit of time 0.14τw, determined by the initial inter-bubble distance W equal the distance between neighbor bubbles centers and the water diffusion coefficient Dw in the melt (τw = W 2/Dw), while the CO2 distribution remains strongly contrasting and the melt remains undersaturated in CO2. This process was modelled experimentally with a hydrous albite melt at P = 200MPa and T = 950–1000 °C. In the first series of experiments at T = 950◦C, a glass powder was filled with pure CO2 at the beginning of the experiment, forming numerous bubbles at the run temperature. Micro-FTIR measurements showed that after 40 minutes the water content in the melt decreased from 4.9 down to 1.8 wt. % with the maximum CO2 content of 500 ppm (below saturation). After 4 hours, the crystallinity increased to 85%, and almost all of the fluid bubbles escaped. The second series of experiments CO2 interacted with a 2 mm high column of hydrous albite melt. Diffusion profiles in the quenched glass were measured using EMPA (H2O) and micro-FTIR (CO2 and H2O). The estimated diffusion coefficients in the melt for H2O (1.1 × 10−6 cm2 /s) and CO2 (1.5 × 10−7 cm2 /s) are consistent with published data. Scaling analysis predicts that in the nature, after the influx of CO2 bubbles a few millimeters in size, the maximum dehydration of rhyolitic magma with viscosity near 105 Pa s without a significant increase in CO2 content occurs after 1–30 days, i.e. a period compatible with the minimum duration of pre-eruption processes in the magma chamber.

Publisher

Geophysical Center of the Russian Academy of Sciences

Reference55 articles.

1. Acosta-Vigil, A., D. London, G. B. Morgan, and T. A. Dewers (2005), Dissolution of Quartz, Albite, and Orthoclase in H2O-Saturated Haplogranitic Melt at 800◦C and 200 MPa: Diffusive Transport Properties of Granitic Melts at Crustal Anatectic Conditions, Journal of Petrology, 47(2), 231–254, https://doi.org/10.1093/petrology/egi073., Acosta-Vigil, A., D. London, G. B. Morgan, and T. A. Dewers (2005), Dissolution of Quartz, Albite, and Orthoclase in H2O-Saturated Haplogranitic Melt at 800◦C and 200 MPa: Diffusive Transport Properties of Granitic Melts at Crustal Anatectic Conditions, Journal of Petrology, 47(2), 231–254, https://doi.org/10.1093/petrology/egi073.

2. Barry, P. H., D. R. Hilton, E. Föri, S. A. Halldórsson, and K. Grönvold (2014), Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes, Geochimica et Cosmochimica Acta, 134, 74–99, https://doi.org/10.1016/j.gca.2014.02.038., Barry, P. H., D. R. Hilton, E. Föri, S. A. Halldórsson, and K. Grönvold (2014), Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes, Geochimica et Cosmochimica Acta, 134, 74–99, https://doi.org/10.1016/j.gca.2014.02.038.

3. Befus, K. S., and J. E. Gardner (2016), Magma storage and evolution of the most recent effusive and explosive eruptions from Yellowstone Caldera, Contributions to Mineralogy and Petrology, 171(4), https://doi.org/10.1007/s00410-016-1244-x., Befus, K. S., and J. E. Gardner (2016), Magma storage and evolution of the most recent effusive and explosive eruptions from Yellowstone Caldera, Contributions to Mineralogy and Petrology, 171(4), https://doi.org/10.1007/s00410-016-1244-x.

4. Befus, K. S., and M. Manga (2019), Supereruption quartz crystals and the hollow reentrants, Geology, 47(8), 710–714, https://doi.org/10.1130/G46275.1, Befus, K. S., and M. Manga (2019), Supereruption quartz crystals and the hollow reentrants, Geology, 47(8), 710–714, https://doi.org/10.1130/G46275.1

5. Behrens, H. (2010), Ar, CO2 and H2O diffusion in silica glasses at 2 kbar pressure, Chemical Geology, 272(1–4), 40–48, https://doi.org/10.1016/j.chemgeo.2010.02.001., Behrens, H. (2010), Ar, CO2 and H2O diffusion in silica glasses at 2 kbar pressure, Chemical Geology, 272(1–4), 40–48, https://doi.org/10.1016/j.chemgeo.2010.02.001.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3