Waveform of the Reflected Impulse at the Oblique Sounding of the Sea Surface

Author:

Karaev Vladimir1ORCID,Titchenko Yuriy1ORCID,Panfilova Mariya1ORCID,Meshkov Evgeniy1ORCID,Kovaldov Dmitry1ORCID

Affiliation:

1. Institute of Applied Physics of the Russian Academy of Sciences

Abstract

The height of sea waves is one of the most important characteristics describing the wave climate of the ocean. At the present, the main radar for remote measurement of wave heights is an altimeter. Measurements are performed at the vertical sounding (incidence angle equal to zero). The Brown model was developed to describe the waveform of the reflected impulse at the vertical sounding. There is no theoretical model for the case of oblique sounding. In the Kirchhoff approximation, the theoretical task about waveform of the reflected impulse at oblique sounding was considered. In the result of the investigation, the analytical formula for the waveform of the reflected impulse for oblique sounding at the small incidence angles (< 12◦) for a microwave radar with a narrow antenna beam was obtained. The waveform of the reflected impulse depends on the width of antenna beam, incidence angle, impulse duration, significant wave height (SWH), altitude of the radar, mean square slopes of large-scale, in comparison with radar wavelength, sea waves. It is shown that possibility exist to retrieve SWH using waveform the reflected impulse at the oblique sounding.

Publisher

Geophysical Center of the Russian Academy of Sciences

Reference28 articles.

1. Amarouche, L., P. Thibaut, O. Z. Zanife, J.-P. Dumont, P. Vincent, and N. Steunou (2004), Improving the Jason-1 Ground Retracking to Better Account for Attitude Effects, Marine Geodesy, 27(1–2), 171–197, https://doi.org/10.1080/01490410490465210., Amarouche, L., P. Thibaut, O. Z. Zanife, J.-P. Dumont, P. Vincent, and N. Steunou (2004), Improving the Jason-1 Ground Retracking to Better Account for Attitude Effects, Marine Geodesy, 27(1–2), 171–197, https://doi.org/10.1080/01490410490465210.

2. Barrick, D. (1968), Rough Surface Scattering Based on the Specular Point Theory, IEEE Transactions on Antennas and Propagation, 16(4), 449–454, https://doi.org/10.1109/TAP.1968.1139220., Barrick, D. (1968), Rough Surface Scattering Based on the Specular Point Theory, IEEE Transactions on Antennas and Propagation, 16(4), 449–454, https://doi.org/10.1109/TAP.1968.1139220.

3. Bass, F. G., and I. M. Fuks (1979), Wave Scattering from Statistically Rough Surfaces, Elsevier, https://doi.org/10.1016/C2013-0-05724-6., Bass, F. G., and I. M. Fuks (1979), Wave Scattering from Statistically Rough Surfaces, Elsevier, https://doi.org/10.1016/C2013-0-05724-6.

4. Brown, G. (1977), The average impulse response of a rough surface and its applications, IEEE Transactions on Antennas and Propagation, 25(1), 67–74, https://doi.org/10.1109/TAP.1977.1141536., Brown, G. (1977), The average impulse response of a rough surface and its applications, IEEE Transactions on Antennas and Propagation, 25(1), 67–74, https://doi.org/10.1109/TAP.1977.1141536.

5. Fu, L.-L., and A. Cazenave (Eds.) (2000), Satellite Altimetry and Earth Sciences. A Handbook of Techniques and Applications (International Geophysics), 463 pp., Academic Press., Fu, L.-L., and A. Cazenave (Eds.) (2000), Satellite Altimetry and Earth Sciences. A Handbook of Techniques and Applications (International Geophysics), 463 pp., Academic Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3