On the Use of a Complex Indicator of the Stability of Permutation Entropy of Time Series Fragments When Analyzing Infrasound Monitoring Signals of the Altai Republic

Author:

Kudryavtsev Nikolay1ORCID,Frolov Ivan1ORCID,Safonova Varvara1ORCID

Affiliation:

1. Gorno-Altaisk State University

Abstract

This paper discusses one of the approaches that allows us to assess the degree of complexity or randomness of fragments of a time series in order to detect infrasound or geomagnetic signals in the results of observations of the dynamics of the natural or man-made processes under study. In our case, we are talking about monitoring the infrasound background on the territory of the Altai Republic. To solve the problem of estimating the required characteristics of a time series with minimal computational costs and in real time, a complex indicator of the stability of permutation entropy is introduced, since estimating the value of classical permutation entropy for n = 3 (the most commonly used version of permutation entropy) does not allow solving the problem with sufficient accuracy.

Publisher

Geophysical Center of the Russian Academy of Sciences

Reference17 articles.

1. Chumak, O. V. (2012), Entropies and fractals in data analysis, R&C Dynamics, https://doi.org/10.13140/2.1.4739.6800 (in Russian)., Chumak, O. V. (2012), Entropies and fractals in data analysis, R&C Dynamics, https://doi.org/10.13140/2.1.4739.6800 (in Russian).

2. Fu, S., Y. Huang, T. Feng, D. Nian, and Z. Fu (2019), Regional contrasting DTR’s predictability over China, Physica A: Statistical Mechanics and its Applications, 521, 282–292, https://doi.org/10.1016/j.physa.2019.01.077., Fu, S., Y. Huang, T. Feng, D. Nian, and Z. Fu (2019), Regional contrasting DTR’s predictability over China, Physica A: Statistical Mechanics and its Applications, 521, 282–292, https://doi.org/10.1016/j.physa.2019.01.077.

3. Higuchi, T. (1988), Approach to an irregular time series on the basis of the fractal theory, Physica D: Nonlinear Phenomena, 31(2), 277–283, https://doi.org/10.1016/0167-2789(88)90081-4., Higuchi, T. (1988), Approach to an irregular time series on the basis of the fractal theory, Physica D: Nonlinear Phenomena, 31(2), 277–283, https://doi.org/10.1016/0167-2789(88)90081-4.

4. Kandal, M. (1981), Time series, Finance and Statistics, Moscow (in Russian)., Kandal, M. (1981), Time series, Finance and Statistics, Moscow (in Russian).

5. Liang, T., G. Xie, D. Mi, W. Jiang, and G. Xu (2020), PM2.5 Concentration Forecasting Based on Data Preprocessing Strategy and LSTM Neural Network, International Journal of Machine Learning and Computing, 10(6), 729–734, https://doi.org/10.18178/ijmlc.2020.10.6.997, Liang, T., G. Xie, D. Mi, W. Jiang, and G. Xu (2020), PM2.5 Concentration Forecasting Based on Data Preprocessing Strategy and LSTM Neural Network, International Journal of Machine Learning and Computing, 10(6), 729–734, https://doi.org/10.18178/ijmlc.2020.10.6.997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3