Microwave Radar Sensing of Sea Waves: An Effective Reflection Coefficient
Author:
Karaev Vladimir1ORCID, Panfilova Mariya1ORCID, Titchenko Yu.1ORCID, Meshkov Evgeniy1ORCID, Kovaldov Dmitry1ORCID, Xiuzhong Li2ORCID, Yijun He2ORCID
Affiliation:
1. Institute of Applied Physics of the Russian Academy of Sciences 2. School of Marine Sciences, Nanjing University of Information Science and Technology
Abstract
At the small incidence angles, the dominant backscattering mechanism for sea waves is the quasi-specular backscattering mechanism. The power of the reflected signal depends on the distribution function of the slopes of large-scale waves (in comparison with radar wavelength) and on the effective reflection coefficient, which is introduced instead of the Fresnel coefficient. In this paper, we discussed a new method for calculating the effective reflection coefficient from the wave scatterometer SWIM data. For the first time, measurements are performed by a radar at different azimuth angles at small incidence angles. This makes it possible to measure the effective reflection coefficient. An original algorithm was developed for data processing and determination of the total mean square slopes of large-scale sea waves and the azimuth dependence of the backscattering radar cross section at zero incidence angle. In the result of subsequent processing, the azimuth dependence of the effective reflection coefficient is retrieved. SWIM data were used to evaluate the developed algorithm. Processing of the test data set confirmed the efficiency of the algorithm. The azimuth anisotropy coefficients for the mean square slopes of large-scale waves and the effective reflection coefficient are calculated
Publisher
Geophysical Center of the Russian Academy of Sciences
Subject
General Earth and Planetary Sciences
Reference14 articles.
1. Bass, F. G., and I. M. Fuks (1979), Wave Scattering from Statistically Rough Surfaces, 528 pp., Elsevier, https://doi.org/10.1 016/c2013-0-05724-6., Bass, F. G., and I. M. Fuks (1979), Wave Scattering from Statistically Rough Surfaces, 528 pp., Elsevier, https://doi.org/10.1 016/c2013-0-05724-6. 2. Chen, P., G. Zheng, D. Hauser, and F. Xu (2018), Quasi-Gaussian probability density function of sea wave slopes from near nadir Ku-band radar observations, Remote Sensing of Environment, 217, 86–100, https://doi.org/10.1016/j.rse.2018.07.027., Chen, P., G. Zheng, D. Hauser, and F. Xu (2018), Quasi-Gaussian probability density function of sea wave slopes from near nadir Ku-band radar observations, Remote Sensing of Environment, 217, 86–100, https://doi.org/10.1016/j.rse.2018.07.027. 3. Chu, X., Y. He, and G. Chen (2012), Asymmetry and Anisotropy of Microwave Backscatter at Low Incidence Angles, IEEE Transactions on Geoscience and Remote Sensing, 50(10), 4014–4024, https://doi.org/10.1109/tgrs.2012.2189010., Chu, X., Y. He, and G. Chen (2012), Asymmetry and Anisotropy of Microwave Backscatter at Low Incidence Angles, IEEE Transactions on Geoscience and Remote Sensing, 50(10), 4014–4024, https://doi.org/10.1109/tgrs.2012.2189010. 4. Freilich, M. H., and B. A. Vanhoff (2003), The Relationship between Winds, Surface Roughness, and Radar Backscatter at Low Incidence Angles from TRMM Precipitation Radar Measurements, Journal of Atmospheric and Oceanic Technology, 20(4), 549–562, https://doi.org/10.1175/1520-0426(2003)20%3C549:TRBWSR%3E2.0.CO;2., Freilich, M. H., and B. A. Vanhoff (2003), The Relationship between Winds, Surface Roughness, and Radar Backscatter at Low Incidence Angles from TRMM Precipitation Radar Measurements, Journal of Atmospheric and Oceanic Technology, 20(4), 549–562, https://doi.org/10.1175/1520-0426(2003)20%3C549:TRBWSR%3E2.0.CO;2. 5. Hauser, D., G. Caudal, S. Guimbard, and A. A. Mouche (2008), A study of the slope probability density function of the ocean waves from radar observations, Journal of Geophysical Research, 113(C2), https://doi.org/10.1029/2007jc004264., Hauser, D., G. Caudal, S. Guimbard, and A. A. Mouche (2008), A study of the slope probability density function of the ocean waves from radar observations, Journal of Geophysical Research, 113(C2), https://doi.org/10.1029/2007jc004264.
|
|