Linear perturbations of the Bloch type of space-periodic magnetohydrodynamic steady states. II. Numerical results

Author:

Chertovskih R1ORCID,Zheligovsky V1

Affiliation:

1. Institute of Earthquake Prediction Theory and Mathematical Geophysics Russian academy of sciences

Abstract

We consider Bloch eigenmodes of three linear stability problems: the kinematic dynamo problem, the hydrodynamic and MHD stability problem for steady space-periodic flows and MHD states comprised of randomly generated Fourier coefficients and having energy spectra of three types: exponentially decaying, Kolmogorov with a cut off, or involving a small number of harmonics (“big eddies”). A Bloch mode is a product of a field of the same periodicity as the perturbed state and a planar harmonic wave, exp(iq · x). Such a mode is characterized by the ratio of spatial scales which, for simplicity, we identify with the length |q| < 1 of the Bloch wave vector q. Computations have revealed that the Bloch modes, whose growth rates are maximum over q, feature the scale ratio that decreases on increasing the nondimensionalized molecular diffusivity and/or viscosity from 0.03 to 0.3, and the scale separation is high (i.e., |q| is small) only for large molecular diffusivities. Largely this conclusion holds for all the three stability problems and all the three energy spectra types under consideration. Thus, in a natural MHD system not affected by strong diffusion, a given scale range gives rise to perturbations involving only moderately larger spatial scales (i.e., |q| only moderately small), and the MHD evolution consists of a cascade of processes, each generating a slightly larger spatial scale; flows or magnetic fields characterized by a high scale separation are not produced. This cascade is unlikely to be amenable to a linear description. Consequently, our results question the allegedly high role of the α-effect and eddy diffusivity that are based on spatial scale separation, as the primary instability or magnetic field generating mechanisms in astrophysical applications. The Braginskii magnetic α-effect in a weakly non-axisymmetric flow, often used for explanation of the solar and geodynamo, is advantageous not being upset by a similar deficiency.

Publisher

Geophysical Center of the Russian Academy of Sciences

Subject

General Earth and Planetary Sciences

Reference12 articles.

1. Braginsky, S. I. (1964a), Self-excitation of a magnetic field during the motion of a highly conducting fluid, Soviet Physics JETP, 20, 726–735 (in Russian)., Braginsky, S. I. (1964a), Self-excitation of a magnetic field during the motion of a highly conducting fluid, Soviet Physics JETP, 20, 726–735 (in Russian).

2. Braginsky, S. I. (1964b), Theory of the hydromagnetic dynamo, Soviet Physics JETP, 20, 1462–1471 (in Russian). Chertovskih, R., and V. Zheligovsky (2023), Linear perturbations of the Bloch type of space-periodic magnetohy-drodynamic steady states. I. Mathematical preliminaries, Russian Journal of Earth Sciences, 23, ES3001, https://doi.org/10.2205/2023ES000834., Braginsky, S. I. (1964b), Theory of the hydromagnetic dynamo, Soviet Physics JETP, 20, 1462–1471 (in Russian). Chertovskih, R., and V. Zheligovsky (2023), Linear perturbations of the Bloch type of space-periodic magnetohy-drodynamic steady states. I. Mathematical preliminaries, Russian Journal of Earth Sciences, 23, ES3001, https://doi.org/10.2205/2023ES000834.

3. Frisch, U. (1995), Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, https://doi.org/10.1017/CBO9781139170666., Frisch, U. (1995), Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, https://doi.org/10.1017/CBO9781139170666.

4. Krause, F., and K.-H. Radler (1980), Mean-Field Magnetohydrodynamics and Dynamo Theory, Elsevier, https://doi.org/10.1016/c2013-0-03269-0., Krause, F., and K.-H. Radler (1980), Mean-Field Magnetohydrodynamics and Dynamo Theory, Elsevier, https://doi.org/10.1016/c2013-0-03269-0.

5. Landau, L. D., and E. M. Lifshitz (1987), Fluid Mechanics. Volume 6 of Course of Theoretical Physics, 2nd ed., Pergamon Press., Landau, L. D., and E. M. Lifshitz (1987), Fluid Mechanics. Volume 6 of Course of Theoretical Physics, 2nd ed., Pergamon Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3