Inverse-forward method for heat flow estimation: case study for the Arctic region

Author:

Petrunin Aleksey12,Soloviev Anatoly32,Sidorov Roman1,Gvishiani Alexei45

Affiliation:

1. Geophysical Center of the Russian Academy of Sciences

2. Schmidt Institute of Physics of the Earth RAS

3. Geophysical Center RAS

4. Geophysical Center of RAS

5. Schmidt Institute of Physics of the Earth, RAS

Abstract

The heat flow data are important in many aspects including interpretation of various geophysical observations, solutions of important engineering problems, modelling of the ice dynamics, and related environmental assessment. However, the distribution of the direct measurements is quite heterogeneous over the Earth. Different methods have been developed during past decades to create continuous maps of the geothermal heat flow (GHF). Most of them are based on the principle of similarity of GHF values for the lithosphere with comparable age and tectonic history or inversion of magnetic field data. Probabilistic approach was also used to realize this principle. In this paper, we present a new method for extrapolating the GHF data, based on the inversion of a geophysical data set using optimization problem solution. We use the results of inversion of seismic and magnetic field data into temperature and data from direct heat flow measurements. We use the Arctic as the test area because it includes the lithosphere of different ages, types, and tectonic settings. In result, the knowledge of GHF is important here for various environmental problems. The resulting GHF map obtained well fits to the observed data and clearly reflects the lithospheric domains with different tectonic history and age. The new GHF map constructed in this paper reveals some significant features that were not identified earlier. In particular, these are the increased GHF zones in the Bering Strait, the Chukchi Sea and the residual GHF anomaly in the area of the Mid-Labrador Ridge. The latter was active during the Paleogene.

Publisher

Geophysical Center of the Russian Academy of Sciences

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. Artemieva, I. M., Global 1°×1° thermal model tc1 for the continental lithosphere: Implications for lithosphere secular evolution, Tectonophysics, 416(1), 245–277, doi:https://doi.org/10.1016/j.tecto.2005.11.022, the Heterogeneous Mantle, 2006., Artemieva, I. M., Global 1°×1° thermal model tc1 for the continental lithosphere: Implications for lithosphere secular evolution, Tectonophysics, 416(1), 245–277, doi:https://doi.org/10.1016/j.tecto.2005.11.022, the Heterogeneous Mantle, 2006.

2. Artemieva, I. M., The continental lithosphere: Reconciling thermal, seismic, and petrologic data, Lithos, 109(1-2), 23–46, doi:10.1016/j.lithos.2008.09.015, 2009., Artemieva, I. M., The continental lithosphere: Reconciling thermal, seismic, and petrologic data, Lithos, 109(1-2), 23–46, doi:10.1016/j.lithos.2008.09.015, 2009.

3. Artemieva, I. M., Lithosphere thermal thickness and geothermal heat flux in Greenland from a new thermal isostasy method, Earth-Science Reviews, 188, 469–481, doi:10.1016/j.earscirev.2018.10.015, 2019., Artemieva, I. M., Lithosphere thermal thickness and geothermal heat flux in Greenland from a new thermal isostasy method, Earth-Science Reviews, 188, 469–481, doi:10.1016/j.earscirev.2018.10.015, 2019.

4. Beaulieu, S. E., E. T. Baker, C. R. German, and A. Maffei, An authoritative global database for active submarine hydrothermal vent fields, Geochemistry, Geophysics, Geosystems, 14(11), 4892–4905, doi:10.1002/2013gc004998, 2013., Beaulieu, S. E., E. T. Baker, C. R. German, and A. Maffei, An authoritative global database for active submarine hydrothermal vent fields, Geochemistry, Geophysics, Geosystems, 14(11), 4892–4905, doi:10.1002/2013gc004998, 2013.

5. Chapman, D. S., and H. N. Pollack, Regional geotherms and lithospheric thickness, Geology, 5(5), 265–268, doi:10. 1130/0091-7613(1977)5<265:RGALT>2.0.CO;2, 1977., Chapman, D. S., and H. N. Pollack, Regional geotherms and lithospheric thickness, Geology, 5(5), 265–268, doi:10. 1130/0091-7613(1977)5<265:RGALT>2.0.CO;2, 1977.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3