Geographical and seasonal distribution of tidal body force field in the Sea of Okhotsk in the context of internal wave dynamics
Author:
Kokoulina Maria1, Kurkina Oxana1, Rouvinskaya Ekaterina1, Kurkin Andrey1
Affiliation:
1. Nizhny Novgorod State Technical University named after R.E. Alexeyev
Abstract
Estimates of the barotropic tidal body force for diurnal and semidiurnal tides are obtained for the Sea of Okhotsk for the summer and winter periods. It is shown that in the study area, the tidal body force for diurnal tides is significantly greater than for semidiurnal ones. The maximum values of this quantity can reach about 2-8 m2s-2, and these values are typical for areas with a sharp bathymetric gradient. A comparison of the tidal body force for the two seasons showed noticeable differences. The features of the transformation of a barotropic tidal wave propagating in the zone of large values of the tidal body force for the K1, O1, M2 tidal constituents are demonstrated. Numerical simulations indicate that baroclinic tidal waves are effectively generated in this area, and intense short-period internal waves are likely to occur.
Publisher
Geophysical Center of the Russian Academy of Sciences
Subject
General Earth and Planetary Sciences
Reference34 articles.
1. Bai, X., Z. Liu, X. Li, and J. Hu (2014), Generation sites of internal solitary waves in the southern Taiwan Strait revealed by MODIS true-colour image observations, International Journal of Remote Sensing, 35(11–12), 4086– 4098, doi:10.1080/01431161.2014.916453., Bai, X., Z. Liu, X. Li, and J. Hu (2014), Generation sites of internal solitary waves in the southern Taiwan Strait revealed by MODIS true-colour image observations, International Journal of Remote Sensing, 35(11–12), 4086– 4098, doi:10.1080/01431161.2014.916453. 2. Baines, P. G. (1973), The generation of internal tides by flat-bump topography, Deep Sea Research and Oceanographic Abstracts, 20(2), 179–205, doi:10.1016/0011-7471(73)90050-8., Baines, P. G. (1973), The generation of internal tides by flat-bump topography, Deep Sea Research and Oceanographic Abstracts, 20(2), 179–205, doi:10.1016/0011-7471(73)90050-8. 3. Baines, P. G. (1982), On internal tide generation models, Deep Sea Research Part A. Oceanographic Research Papers, 29(3), 307–338, doi:10.1016/0198-0149(82)90098-X., Baines, P. G. (1982), On internal tide generation models, Deep Sea Research Part A. Oceanographic Research Papers, 29(3), 307–338, doi:10.1016/0198-0149(82)90098-X. 4. Baines, P. G. (1995), Topographic effects in stratified flows, 558 pp., Cambridge University Press, Cambridge., Baines, P. G. (1995), Topographic effects in stratified flows, 558 pp., Cambridge University Press, Cambridge. 5. Boyer, T. P., H. E. García, R. A. Locarnini, M. M. Zweng, et al. (2018), World Ocean Atlas 2018. Temperature, Salinity, NOAA National Centers for Environmental Information. Dataset, https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:NCEI-WOA18, Accessed: 08.08.2022., Boyer, T. P., H. E. García, R. A. Locarnini, M. M. Zweng, et al. (2018), World Ocean Atlas 2018. Temperature, Salinity, NOAA National Centers for Environmental Information. Dataset, https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:NCEI-WOA18, Accessed: 08.08.2022.
|
|