Downward continuation of airborne gravimetry data by means of spherical radial basis functions
Author:
Sugaipova Leyla12, Neyman Yury1
Affiliation:
1. Moscow State University of Geodesy and Cartography (MIIGAiK) 2. Center of Geodesy, Cartography and SDI
Abstract
The problem of downward continuation of airborne gravimetry data is discussed. Use of spherical radial
basis functions (SRBF) to solve this ill-posed problem is proposed. Gravity disturbances observed at
flight high are continued downward to disturbing potential. The SRBF method is numerically tested
using synthesised data for flight heights 2000 m, 4600 m and 6000 m and grid steps 1 arcmin and
2.5 arcmin in area bounded by colatitudes 40°, 43° and longitudes 153°, 157° (spherical coordinates).
The experiments prove that the SRBF method can provide stable and accurate results. Moreover, as a
result of this procedure one have an approximator in the form of a linear combination of SRBF which
allows to determine the values of different transforms of potential by applying the corresponding
operators to this expression.
Publisher
Geophysical Center of the Russian Academy of Sciences
Subject
General Earth and Planetary Sciences
Reference19 articles.
1. Alberts, B., & Klees, R. (2004). A comparison of methods for the inversion of airborne gravity data. Journal of Geodesy, 78(1–2), 55–65. https://doi.org/10.1007/s00190-003-0366-x, Alberts, B., & Klees, R. (2004). A comparison of methods for the inversion of airborne gravity data. Journal of Geodesy, 78(1–2), 55–65. https://doi.org/10.1007/s00190-003-0366-x 2. Försberg, R. (2003). Downward continuation of airborne gravity data. In I. N. Tziavos (Ed.), Gravity and Geoid 2002, 3rd Meeting of the International Gravity and Geoid Commission (IGGC) (pp. 51–56). ZITI Editions., Försberg, R. (2003). Downward continuation of airborne gravity data. In I. N. Tziavos (Ed.), Gravity and Geoid 2002, 3rd Meeting of the International Gravity and Geoid Commission (IGGC) (pp. 51–56). ZITI Editions. 3. Försberg, R., Olesen, A., Bastos, L., Gidskehaug, A., Meyer, U., & Timmen, L. (2000). Airborne geoid determination. Earth, Planets and Space, 52(10), 863–866. https://doi.org/10.1186/bf03352296, Försberg, R., Olesen, A., Bastos, L., Gidskehaug, A., Meyer, U., & Timmen, L. (2000). Airborne geoid determination. Earth, Planets and Space, 52(10), 863–866. https://doi.org/10.1186/bf03352296 4. Kingdon, R., & Vanı́ček, P. (2011). Poisson downward continuation solution by the Jacobi method. Journal of Geodetic Science, 1(1), 74–81. https://doi.org/10.2478/v10156-010-0009-0, Kingdon, R., & Vanı́ček, P. (2011). Poisson downward continuation solution by the Jacobi method. Journal of Geodetic Science, 1(1), 74–81. https://doi.org/10.2478/v10156-010-0009-0 5. Li, X., Huang, J., Klees, R., & others. (2022). Characterization and stabilization of the downward continuation problem for airborne gravity data. J. Geod. 96, 96(4). https://doi.org/10.1007/s00190-022-01607-y, Li, X., Huang, J., Klees, R., & others. (2022). Characterization and stabilization of the downward continuation problem for airborne gravity data. J. Geod. 96, 96(4). https://doi.org/10.1007/s00190-022-01607-y
|
|