Bjerknes compensation mechanism as a possible trigger of the low-frequency variability of Arctic amplification

Author:

Latonin Mikhail12,Bashmachnikov Igor13,Bobylev Leonid1

Affiliation:

1. Nansen International Environmental and Remote Sensing Centre

2. St. Petersburg State University

3. Saint Petersburg State University

Abstract

The causes of Arctic amplification are widely debated, and a cohesive picture has not been obtained yet. This study has investigated the role of the Atlantic meridional oceanic and atmospheric heat transport into the Arctic in the emergence of Arctic amplification. The integral advective fluxes in the layer of Atlantic waters and in the lower troposphere were considered. The results show a strong coupling between the meridional heat fluxes and regional Arctic amplification in the Eurasian Arctic on the decadal time scales (10–15 years). We argue that the low-frequency variability of Arctic amplification is regulated via the chain of oceanic heat transport — atmospheric heat transport — Arctic amplification. The atmospheric response to the ocean influence occurs with a delay of three years and is attributed to the Bjerknes compensation mechanism. In turn, the atmospheric heat and moisture transport directly affects the magnitude of Arctic amplification, with the latter lagging by one year. Thus, the variability of oceanic heat transport at the southern boundary of the Nordic Seas might be a predictor of the Arctic amplification magnitude over the Eurasian Basin of the Arctic Ocean with a lead time of four years. The results are consistent with the concept of the decadal Arctic climate variability expressed via the Arctic Ocean Oscillation index.

Publisher

Geophysical Center of the Russian Academy of Sciences

Subject

General Earth and Planetary Sciences

Reference62 articles.

1. Aagaard, K., L. K. Coachman, E. Carmack (1981), On the halocline of the Arctic Ocean, Deep Sea Res. Part A Oceanogr. Res. Papers, 28, 529–545, https://doi.org/10.1016/0198-0149(81)90115-1, Aagaard, K., L. K. Coachman, E. Carmack (1981), On the halocline of the Arctic Ocean, Deep Sea Res. Part A Oceanogr. Res. Papers, 28, 529–545, https://doi.org/10.1016/0198-0149(81)90115-1

2. Alekseev, G., S. Kuzmina, L. Bobylev, A. Urazgildeeva, N. Gnatiuk (2019), Impact of atmospheric heat and moisture transport on the Arctic warming, Int. J. Climatol., 39, 3582–3592, https://doi.org/10.1002/joc.6040, Alekseev, G., S. Kuzmina, L. Bobylev, A. Urazgildeeva, N. Gnatiuk (2019), Impact of atmospheric heat and moisture transport on the Arctic warming, Int. J. Climatol., 39, 3582–3592, https://doi.org/10.1002/joc.6040

3. Allen, M. R., O. P. Dube, W. Solecki, F. Aragon-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta et al. (2018), Framing and Context, in: Masson-Delmotte, V., P. Zhai, H.-O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, et al. (Eds.), Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, p. 49–91, IPCC, Geneva, Switzerland., Allen, M. R., O. P. Dube, W. Solecki, F. Aragon-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta et al. (2018), Framing and Context, in: Masson-Delmotte, V., P. Zhai, H.-O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, et al. (Eds.), Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, p. 49–91, IPCC, Geneva, Switzerland.

4. Arrhenius, S. (1896), On the influence of carbonic acid in the air upon the temperature of the ground, Lond. Edinb. Dubl. Phil. Mag., 41, 237–276., Arrhenius, S. (1896), On the influence of carbonic acid in the air upon the temperature of the ground, Lond. Edinb. Dubl. Phil. Mag., 41, 237–276.

5. Baggett, C., S. Lee, S. Feldstein (2016), An investigation of the presence of atmospheric rivers over the North Pacific during planetary-scale wave life cycles and their role in Arctic warming, J. Atmos. Sci., 73, 4329–4347, https://doi.org/10.1175/JAS-D-16-0033.1, Baggett, C., S. Lee, S. Feldstein (2016), An investigation of the presence of atmospheric rivers over the North Pacific during planetary-scale wave life cycles and their role in Arctic warming, J. Atmos. Sci., 73, 4329–4347, https://doi.org/10.1175/JAS-D-16-0033.1

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3