Atmospheric turbulence structure above urban nonhomogeneous surface
Author:
Drozd I.1, Repina I.1, Gavrikov A.2, Stepanenko V.1, Artamonov A.3, Pashkin A.3, Varentsov A.1
Affiliation:
1. Lomonosov Moscow State Univerisity 2. Shirshov Institute of Oceanology RAS 3. A. M. Obukhov Institute of Atmospheric Physics RAS
Abstract
A new 21-meter eddy covariance tower is installed in the Meteorological observatory of Moscow State University in November 2019. It includes 3 levels with METEK sonic anemometers. The mast is located inside the urban area and makes it possible to analyze the structure of atmospheric turbulence in a heterogeneous urban condition. The measurement data from November 2019 to May 2020 are processed. Turbulent fluctuations of the wind velocity components are found to increase with height within 20 meters above the surface. The turbulent kinetic energy is proportional to the square of the averaged horizontal wind speed. The drag coefficient is determined by the type of footprint surface, with a value of 0.08 and 0.05 for urbanized and vegetated surfaces, respectively. The "turbulent flux of heat flux" is reasonably well predicted by diagnostic relation with heat flux, skewness and standard deviation of vertical speed, suggesting significant contribution of coherent structures to turbulent fluxes. The daily amplitude of the temperature variance increases with the daily amplitude of the average temperature. The paper considers the conditions for the applicability of the Monin-Obukhov similarity theory to the calculation of turbulent fluxes over a heterogeneous urban landscape.
Publisher
Geophysical Center of the Russian Academy of Sciences
Subject
General Earth and Planetary Sciences
Reference33 articles.
1. Abdella, K., and N. McFarlane, A New Second-Order Turbulence Closure Scheme for the Planetary Boundary Layer, J. Atmos. Sci., 54(14), 1850–1867, doi:10.1175/1520-0469(1997)054<1850:ANSOTC>2.0.CO;2, 1997., Abdella, K., and N. McFarlane, A New Second-Order Turbulence Closure Scheme for the Planetary Boundary Layer, J. Atmos. Sci., 54(14), 1850–1867, doi:10.1175/1520-0469(1997)054<1850:ANSOTC>2.0.CO;2, 1997. 2. Ament, F., and C. Simmer, Improved Representation of Land-surface Heterogeneity in a Non-hydrostatic Numerical Weather Prediction Model, Boundary-Layer Meteorology, 121(1), 153–174, doi:10.1007/s10546-006-9066-4, 2006., Ament, F., and C. Simmer, Improved Representation of Land-surface Heterogeneity in a Non-hydrostatic Numerical Weather Prediction Model, Boundary-Layer Meteorology, 121(1), 153–174, doi:10.1007/s10546-006-9066-4, 2006. 3. Anderson, W., Turbulent channel flow over heterogeneous roughness at oblique angles, J. Fluid Mech., 886, A15–1–A15–15, doi:10.1017/jfm.2019.1022, 2020., Anderson, W., Turbulent channel flow over heterogeneous roughness at oblique angles, J. Fluid Mech., 886, A15–1–A15–15, doi:10.1017/jfm.2019.1022, 2020. 4. Aubinet, M., T. Vesala, and D. Papale, Eddy covariance: a practical guide to measurement and data analysis, 442 pp., Dordrecht: Springer, doi:10.1007/978-94-007-2351-1, 2012., Aubinet, M., T. Vesala, and D. Papale, Eddy covariance: a practical guide to measurement and data analysis, 442 pp., Dordrecht: Springer, doi:10.1007/978-94-007-2351-1, 2012. 5. Barskov, K. V., V. M. Stepanenko, I. A. Repina, A. Y. Artamonov, and A. V. Gavrikov, Two regimes of turbulent fluxes above frozen small lake surrounded by forest, Bound.-Layer Meteorol., 173(3), 311–320, doi:10.1007/s10546-019-00469-w, 2019., Barskov, K. V., V. M. Stepanenko, I. A. Repina, A. Y. Artamonov, and A. V. Gavrikov, Two regimes of turbulent fluxes above frozen small lake surrounded by forest, Bound.-Layer Meteorol., 173(3), 311–320, doi:10.1007/s10546-019-00469-w, 2019.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research in Dynamic Meteorology in Russia in 2019–2022;Izvestiya, Atmospheric and Oceanic Physics;2023-12 2. Research in Dynamic Meteorology in Russia in 2019–2022;Известия Российской академии наук. Физика атмосферы и океана;2023-12-01
|
|