Platelets upregulate tumor cell programmed death ligand 1 in an epidermal growth factor receptor-dependent manner in vitro

Author:

Guo Qiuchen12ORCID,Malloy Michael W.1,Roweth Harvey G.12,McAllister Sandra S.1234,Italiano Joseph E.25,Battinelli Elisabeth M.12

Affiliation:

1. 1Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA

2. 2Department of Medicine, Harvard Medical School, Boston, MA

3. 3Division of Hematology, Department of Medicine, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA

4. 4Division of Hematology, Department of Medicine, Harvard Stem Cell Institute, Cambridge, MA

5. 5Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, MA

Abstract

Abstract Programmed death ligand 1 (PD-L1) is an immune checkpoint protein that suppresses cytotoxic T lymphocytes and is often overexpressed in cancers. Due to favorable clinical trial results, immune checkpoint inhibition (ICI) is part of Food and Drug Administration approved immuno-oncology therapies; however, not all patients benefit from ICI therapy. High blood platelet-to-lymphocyte ratio has been associated with failure of ICI treatment, but whether platelets have a role in hindering ICI response is unclear. Here, we report that coculturing platelets with cancer cell lines increased protein and gene expression of tumor cell PD-L1, which was reduced by antiplatelet agents, such as aspirin and ticagrelor. Platelet cytokine arrays revealed that the well-established cytokines, including interferon-γ, were not the main regulators of platelet-mediated PD-L1 upregulation. Instead, the high molecular weight epidermal growth factor (EGF) is abundant in platelets, which caused an upregulation of tumor cell PD-L1. Both an EGF-neutralizing antibody and cetuximab (EGF receptor [EGFR] monoclonal antibody) inhibited platelet-induced increases in tumor cell PD-L1, suggesting that platelets induce tumor cell PD-L1 in an EGFR-dependent manner. Our data reveal a novel mechanism for platelets in tumor immune escape and warrant further investigation to determine if targeting platelets improves ICI therapeutic responses.

Publisher

American Society of Hematology

Subject

Hematology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3