Antileukemic efficacy of a potent artemisinin combined with sorafenib and venetoclax

Author:

Moses Blake S.12ORCID,McCullough Samantha12,Fox Jennifer M.12,Mott Bryan T.3ORCID,Bentzen Søren M.45ORCID,Kim MinJung12,Tyner Jeffrey W.67,Lapidus Rena G.58,Emadi Ashkan589ORCID,Rudek Michelle A.810ORCID,Kingsbury Tami J.1511ORCID,Civin Curt I.12511ORCID

Affiliation:

1. Center for Stem Cell Biology & Regenerative Medicine and

2. Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD;

3. National Institutes of Health (NIH) Medical Scientist Training Program, School of Medicine, University of Alabama at Birmingham, Birmingham, AL;

4. Department of Epidemiology and Public Health and

5. Marlene and Stewart Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD;

6. Department of Cell, Developmental and Cancer Biology and

7. Knight Cancer Institute, Oregon Health & Science University, Portland, OR;

8. Department of Medicine and

9. Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD;

10. Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD; and

11. Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD

Abstract

Abstract Artemisinins are active against human leukemia cell lines and have low clinical toxicity in worldwide use as antimalarials. Because multiagent combination regimens are necessary to cure fully evolved leukemias, we sought to leverage our previous finding that artemisinin analogs synergize with kinase inhibitors, including sorafenib (SOR), by identifying additional synergistic antileukemic drugs with low toxicity. Screening of a targeted antineoplastic drug library revealed that B-cell lymphoma 2 (BCL2) inhibitors synergize with artemisinins, and validation assays confirmed that the selective BCL2 inhibitor, venetoclax (VEN), synergized with artemisinin analogs to inhibit growth and induce apoptotic cell death of multiple acute leukemia cell lines in vitro. An oral 3-drug “SAV” regimen (SOR plus the potent artemisinin-derived trioxane diphenylphosphate 838 dimeric analog [ART838] plus VEN) killed leukemia cell lines and primary cells in vitro. Leukemia cells cultured in ART838 had decreased induced myeloid leukemia cell differentiation protein (MCL1) levels and increased levels of DNA damage–inducible transcript 3 (DDIT3; GADD153) messenger RNA and its encoded CCATT/enhancer-binding protein homologous protein (CHOP), a key component of the integrated stress response. Thus, synergy of the SAV combination may involve combined targeting of MCL1 and BCL2 via discrete, tolerable mechanisms, and cellular levels of MCL1 and DDIT3/CHOP may serve as biomarkers for action of artemisinins and SAV. Finally, SAV treatment was tolerable and resulted in deep responses with extended survival in 2 acute myeloid leukemia (AML) cell line xenograft models, both harboring a mixed lineage leukemia gene rearrangement and an FMS-like receptor tyrosine kinase-3 internal tandem duplication, and inhibited growth in 2 AML primagraft models.

Publisher

American Society of Hematology

Subject

Hematology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3