A novel algorithm comprehensively characterizes human RH genes using whole-genome sequencing data

Author:

Chang Ti-Cheng1,Haupfear Kelly M.2,Yu Jing2,Rampersaud Evadnie1,Sheehan Vivien A.3ORCID,Flanagan Jonathan M.3,Hankins Jane S.4ORCID,Weiss Mitchell J.4,Wu Gang1,Vege Sunitha5,Westhoff Connie M.5,Chou Stella T.6,Zheng Yan2ORCID

Affiliation:

1. Center for Applied Bioinformatics and

2. Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN;

3. Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX;

4. Department of Hematology, St Jude Children’s Research Hospital, Memphis, TN;

5. Laboratory of Immunohematology and Genomics, New York Blood Center, New York, NY; and

6. Department of Pediatrics, The Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA

Abstract

AbstractRHD and RHCE genes encode Rh blood group antigens and exhibit extensive single-nucleotide polymorphisms and chromosome structural changes in patients with sickle cell disease (SCD). RH variation can drive loss of antigen epitopes or expression of new epitopes, predisposing patients with SCD to Rh alloimmunization. Serologic antigen typing is limited to common Rh antigens, necessitating a genetic approach to detect variant antigen expression. We developed a novel algorithm termed RHtyper for RH genotyping from existing whole-genome sequencing (WGS) data. RHtyper determined RH genotypes in an average of 3.4 and 3.3 minutes per sample for RHD and RHCE, respectively. In a validation cohort consisting of 57 patients with SCD, RHtyper achieved 100% accuracy for RHD and 98.2% accuracy for RHCE, when compared with genotypes obtained by RH BeadChip and targeted molecular assays and after verification by Sanger sequencing and independent next-generation sequencing assays. RHtyper was next applied to WGS data from an additional 827 patients with SCD. In the total cohort of 884 patients, RHtyper identified 38 RHD and 28 RHCE distinct alleles, including a novel RHD DAU allele, RHD* 602G, 733C, 744T 1136T. RHtyper provides comprehensive and high-throughput RH genotyping from WGS data, facilitating deconvolution of the extensive RH genetic variation among patients with SCD. We have implemented RHtyper as a cloud-based public access application in DNAnexus (https://platform.dnanexus.com/app/RHtyper), enabling clinicians and researchers to perform RH genotyping with next-generation sequencing data.

Publisher

American Society of Hematology

Subject

Hematology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3