Low-cost transcriptional diagnostic to accurately categorize lymphomas in low- and middle-income countries

Author:

Valvert Fabiola1ORCID,Silva Oscar2ORCID,Solórzano-Ortiz Elizabeth1,Puligandla Maneka3,Siliézar Tala Marcos Mauricio1,Guyon Timothy4,Dixon Samuel L.4,López Nelly1,López Francisco1ORCID,Carías Alvarado César Camilo1ORCID,Terbrueggen Robert4,Stevenson Kristen E.3,Natkunam Yasodha2,Weinstock David M.56ORCID,Briercheck Edward L.7ORCID

Affiliation:

1. La Liga Nacional Contra el Cáncer de Guatemala y El Instituto de Cancerología y Hospital Dr. Bernardo del Valle, Guatemala, Guatemala;

2. Department of Pathology, Stanford University School of Medicine, Stanford, CA;

3. Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA;

4. DxTerity Diagnostics, Rancho Dominguez, CA;

5. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA;

6. Harvard Medical School, Boston, MA; and

7. University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA

Abstract

Abstract Inadequate diagnostics compromise cancer care across lower- and middle-income countries (LMICs). We hypothesized that an inexpensive gene expression assay using paraffin-embedded biopsy specimens from LMICs could distinguish lymphoma subtypes without pathologist input. We reviewed all biopsy specimens obtained at the Instituto de Cancerología y Hospital Dr. Bernardo Del Valle in Guatemala City between 2006 and 2018 for suspicion of lymphoma. Diagnoses were established based on the World Health Organization classification and then binned into 9 categories: nonmalignant, aggressive B-cell, diffuse large B-cell, follicular, Hodgkin, mantle cell, marginal zone, natural killer/T-cell, or mature T-cell lymphoma. We established a chemical ligation probe-based assay (CLPA) that quantifies expression of 37 genes by capillary electrophoresis with reagent/consumable cost of approximately $10/sample. To assign bins based on gene expression, 13 models were evaluated as candidate base learners, and class probabilities from each model were then used as predictors in an extreme gradient boosting super learner. Cases with call probabilities < 60% were classified as indeterminate. Four (2%) of 194 biopsy specimens in storage <3 years experienced assay failure. Diagnostic samples were divided into 70% (n = 397) training and 30% (n = 163) validation cohorts. Overall accuracy for the validation cohort was 86% (95% confidence interval [CI]: 80%-91%). After excluding 28 (17%) indeterminate calls, accuracy increased to 94% (95% CI: 89%-97%). Concordance was 97% for a set of high-probability calls (n = 37) assayed by CLPA in both the United States and Guatemala. Accuracy for a cohort of relapsed/refractory biopsy specimens (n = 39) was 79% and 88%, respectively, after excluding indeterminate cases. Machine-learning analysis of gene expression accurately classifies paraffin-embedded lymphoma biopsy specimens and could transform diagnosis in LMICs.

Publisher

American Society of Hematology

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3