Affiliation:
1. Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
Abstract
Abstract
Newer immune-based approaches based on recruitment and redirection of endogenous and/or synthetic immunity such as chimeric antigen receptor T cells or bispecific antibodies are transforming the clinical management of multiple myeloma (MM). Contributions of the immune system to the antitumor effects of myeloma therapies are also increasingly appreciated. Clinical malignancy in MM originates in the setting of systemic immune alterations that begin early in myelomagenesis and regional changes in immunity affected by spatial contexture. Preexisting and therapy-induced changes in immune cells correlate with outcomes in patients with MM including after immune therapies. Here, we discuss insights from and limitations of available data about immune status and outcomes after immune therapies in patients with MM. Preexisting variation in systemic and/or regional immunity is emerging as a major determinant of the efficacy of current immune therapies as well as vaccines. However, MM is a multifocal malignancy. As with solid tumors, integrating spatial aspects of the tumor and consideration of immune targets with the biology of immune cells may be critical to optimizing the application of immune therapy, including T-cell redirection, in MM. We propose 5 distinct spatial immune types of MM that may provide an initial framework for the optimal application of specific immune therapies in MM: immune depleted, immune permissive, immune excluded, immune suppressed, and immune resistant. Such considerations may also help optimize rational patient selection for emerging immune therapies to improve outcomes.
Publisher
American Society of Hematology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献