Autooxidation as a basis for altered function by polymorphonuclear leukocytes

Author:

Baehner RL,Boxer LA,Allen JM,Davis J

Abstract

Abstract To investigate the possibility that human polymorphonuclear leukocytes (PMN) elaborate sufficient amounts of hydrogen peroxide (H2O2) and other radicals of reduced oxygen to be autotoxic and retard directed cell movement and phagocytosis, the rate of ingestion of opsonized lipopolysaccharide-paraffin oil particles and movement through Nuclepore filters were studied. Ingestion rates were increased under anaerobic conditions and in normal aerobic conditions in the presence of extracellular catalase but not superoxide dismutase (SOD) or scavengers of singlet oxygen or hydroxyl radicals. Conversely, ingestion rates were decreased when cells were exposed to H2O2 or a superoxide anion (O2-)-H2O2 generating system of xanthine-xanthine oxidase. Catalase, but not SOD, prevented the effect and also enhanced the directed movement of PMN in normal aerobic conditions. PMN from volunteers administered 1600 U/day of the membrane lipid antioxidant alpha-tocopherol were hyperphagocytic but killed Staphylococcus aureus 502A less effectively than controls, suggesting that less H2O2 was available to damage PMN or kill bacteria. H2O2-dependent stimulation of the hexose monophosphate shunt, H2O2 release from phaogytizing PMN, and fluoresceinated concanavalin A cap formation promoted by H2O2 damage to microtubules were all diminished, but the release of O2- from phagocytizing PMN was not diminished in the vitamin E group. These results support the hypothesis that directed movement and phagocytosis by PMN are attenuated by autooxidative damage to the cell membrane by endogenously derived H2O2 and that the administration in vivo of vitamin E may prevent this damage by scavenging H2O2.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3