Metabolic heterogeneity of eosinophils from normal and hypereosinophilic patients

Author:

Pincus SH,Schooley WR,DiNapoli AM,Broder S

Abstract

Abstract Eosinophils, which may be associated with allergic, parasitic, or neoplastic disease, have a potent oxidative burst that may be activated by particulate or soluble stimuli. Eosinophils from normal persons and patients with hypereosinophilia were compared with respect to their ability to produce the active oxygen product, superoxide anion. Normal eosinophils produced large amounts of superoxide anion under resting conditions (0.53 +/- 0.15 nmoles cyto-c/10(5) eos/hr) and when stimulated by preopsonized zymosan (0.85 +/0 1.10 nmoles cyto-c/10(5) eos/hr) or phorbol myristate acetate (PMA) (2.38 +/- 0.46 nmoles cyto- c/10(5) eos/hr). Considerable variation was observed in superoxide production by eosinophils from patients with hypereosinophilia. Eosinophils from a group of four patients with hypereosinophilia associated with neoplastic disease produced less superoxide anion than normal eosinophils when stimulated by preopsonized zymosan or PMA (p less than or equal to 0.05). Eosinophils from a group of 5 patients with other causes of hypereosinophilia produced more superoxide anion than normal eosinophils when stimulated by PMA (p less than or equal to 0.01). These studies demonstrate metabolic heterogeneity of eosinophils from patients with hypereosinophilia, and further emphasize that normal eosinophils and eosinophils from hypereosinophilic patients are not functionally equivalent.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3