Dominant type 1 von Willebrand disease caused by mutated cysteine residues in the D3 domain of von Willebrand factor

Author:

Eikenboom JC1,Matsushita T1,Reitsma PH1,Tuley EA1,Castaman G1,Briet E1,Sadler JE1

Affiliation:

1. Department of Hematology, University Hospital, Leiden, The Netherlands.

Abstract

No defects have been reported in moderately severe type 1 von Willebrand disease (vWD) with a clear autosomal dominant inheritance pattern, and the mechanism underlying this form of vWD remains obscure. We have studied a type 1 vWD family with such a dominant phenotype. The entire coding sequence of the von Willebrand factor (vWF) gene was analyzed by direct sequencing of DNA fragments amplified by polymerase chain reaction. Only one candidate mutation T(3445)-->C in exon 26 was detected that predicts a replacement of cysteine (C) at position 386 of the mature vWF subunit by arginine (R). Both mutant and normal vWF alleles were expressed as shown by analysis of platelet mRNA. This substitution segregates with vWD in the family and was not found in 100 unrelated individuals. The recombinant mutant vWF(C386R) was characterized by expression in 293T cells. The secretion of vWF(C386R) was greatly impaired due to retention in the endoplasmic reticulum. In cotransfections of normal and mutant vWF constructs, the vWF(C386R) subunits caused a dose-dependent decrease in the secretion of vWF. The multimer pattern remained nearly normal and consistent with a dominant vWD type 1 phenotype. The importance of the cysteine residues in the D3 domain of vWF in the pathogenesis of dominant type 1 vWD was further shown by the detection of another cysteine mutation, Cys367-->Phe, in two additional unrelated patients with a similar dominant type 1 vWD phenotype. We conclude that the loss of cysteine pairing in the D3 domain, leaving one free cysteine, can induce a purely quantitative deficiency of vWF by dominantly suppressing the secretion of normal vWF.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3