Glanzmann thrombasthenia due to a two amino acid deletion in the fourth calcium-binding domain of alpha IIb: demonstration of the importance of calcium-binding domains in the conformation of alpha IIb beta 3

Author:

Basani RB1,Vilaire G1,Shattil SJ1,Kolodziej MA1,Bennett JS1,Poncz M1

Affiliation:

1. Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, USA.

Abstract

Abstract The integrin alpha IIb beta 3, a calcium-dependent heterodimer, plays a critical role in platelet aggregation. The alpha IIb subunit of the heterodimer contains four highly conserved putative calcium-binding domains in its extracellular portion. During studies of the molecular basis of Glanzmann thrombasthenia in a child of mixed Caucasian background whose platelets expressed little alpha IIb beta 3 on their surface, we found the patient heterozygous for a two amino acid deletion in the fourth alpha IIb calcium-binding domain. When this alpha IIb mutant was expressed in COS-1 cells, we found that the deletion did not interfere with the assembly of alpha IIb beta 3 heterodimers, but altered their conformation such that they were neither recognized by the heterodimer-specific antibody A2A9 nor able to undergo further intracellular processing or transport to the cell surface. These results suggest that the calcium-binding domains in alpha IIb play an important role maintaining the overall conformation of alpha IIb beta 3. To confirm this suggestion, we deleted each of the four 12 amino acid calcium-binding domains in alpha IIb by in vitro mutagenesis and expressed the mutants along with beta 3 in COS-1 cells. Each construct formed a heterodimer with beta 3, but none of the heterodimers interacted with A2A9 or underwent further intracellular processing. These data indicate that the calcium-binding domains in alpha IIb are not involved in alpha IIb beta 3 heterodimer formation, but their presence is required for the intracellular transport of alpha IIb beta 3 to the cell surface.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3