Structure and expression of the RH locus in the Rh-deficiency syndrome

Author:

Cherif-Zahar B1,Raynal V1,Le Van Kim C1,D'Ambrosio AM1,Bailly P1,Cartron JP1,Colin Y1

Affiliation:

1. Unite INSERM U76, Institut National de Transfusion Sanguine, Paris, France.

Abstract

Abstract Red blood cell deficiency of Rh proteins is associated with morphologic and functional abnormalities of erythrocytes and with a chronic hemolytic anemia of varying severity. Rh-deficiency may be the result of homozygosity either for a silent allele at the RH locus (Rhnull amorph type) or for a recessive inhibitor gene(s) at an autosomal locus unlinked to RH locus (Rhnull regulator and Rhmod). In this report, we investigated the RH locus structure of Rh-deficient individuals by Southern analysis using cDNA and exon-specific probes deduced from the recent cloning of Rh genes (CcEe and D). As expected from family studies indicating that Rhmod and Rhnull regulator individuals are unable to express Rh antigens but are able to convey functional Rh genes from one generation to another, no alteration of the Rh genes was detected in these variants. Although Rhnull of the amorph type arose by inheritance of a pair of silent alleles at the RH locus, the general organization of the unique CcEe gene in the genome of the particular individual under examination was apparently normal and indistinguishable from a Rh-negative chromosome. More surprisingly, no mutation could be detected by sequencing the polymerase chain reaction (PCR)-amplified reticulocyte mRNAs, suggesting that the RH locus of this patient might be altered in its transcriptional activity. Through hybridization with exon-specific probes, we were also able to determine the zygosity for the D gene in DNA samples from individuals of known genotypes; using this approach, we found that Rhnull regulator variants could be either of the DD, Dd, or dd genotypes. These findings suggest that the postulated inhibitor gene(s) can negatively suppress the RH locus expression from chromosomes carrying either one or two of the Rh genes.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3