Activation of human platelets by immune complexes prepared with cationized human IgG

Author:

Schattner M1,Lazzari M1,Trevani AS1,Malchiodi E1,Kempfer AC1,Isturiz MA1,Geffner JR1

Affiliation:

1. Instituto de Investigaciones Hematologicas (IIHEMA), Academia Nacional de Medicina, Buenos Aires, Argentina.

Abstract

Abstract The present study shows that the ability of soluble immune complexes (IC), prepared with human IgG and rabbit IgG antibodies against human IgG, to trigger platelet activation was markedly higher for IC prepared with cationized human IgG (catIC) compared with those prepared with untreated human IgG (cIC). CatIC induced platelet aggregation and adenosine triphosphate release in washed platelets (WP), gel-filtered platelets (GFP), or platelet-rich plasma (PRP) at physiologic concentrations of platelets (3 x 10(8)/mL) and at low concentrations of catIC (1 to 30 micrograms/mL). On the contrary, under similar experimental conditions, cIC did not induce aggregation in PRP, WP, or GFP. Low aggregation responses were only observed using high concentrations of both WP (9 x 10(8)/mL) and cIC (500 micrograms/mL). Interestingly, catIC were also able to induce platelet activation under nonaggregating conditions, as evidenced by P-selectin expression. Cationized human IgG alone did not induce platelet aggregation in PRP but triggered either WP or GFP aggregation. However, the concentration needed to induce these responses, was about eightfold higher than those required for catIC. The responses induced either by catIC or cationized human IgG were completely inhibited by treatment with heparin, dextran sulphate, EDTA, prostaglandin E1, or IV3, a monoclonal antibody against the receptor II for the Fc portion of IgG (Fc gamma RII). The data presented in this study suggest that IgG charge constitutes a critical property that conditions the ability of IC to trigger platelet activation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3