Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion

Author:

Tsai HM1

Affiliation:

1. Division of Hematology, Montefiore Medical Center, Bronx, NY 10467, USA.

Abstract

von Willebrand factor (vWF) in the circulation is subjected to proteolysis. In a recent study, we reported that normal plasma contains a protease activity that cleaves vWF in a shear-dependent manner, causing a decrease in its multimer size while generating dimers of the 140-kD and the 176-kD fragments indistinguishable from those found in normal plasma. In this study, the plasma protease has been partially purified and characterized and the role of vWF conformation in its cleavage by the protease has been further investigated. Guanidine HCl caused unfolding of vWF in a concentration-dependent manner, resulting in a shift in its fluorescence emission maxima to longer wavelengths. A dramatic increase in its proteolytic susceptibility was seen at 1.1 to 1.2 mol/L guanidine HCl, a concentration causing only a 3- to 4-nm shift in vWF emission maxima. Although vWF molecules refolded as guanidine HCl was removed by dialysis, the refolding was accompanied only by a partial recovery of the proteolytic resistance. The plasma protease, partially purified by approximately 900 folds by Sephacryl S- 300 HR gel filtration, Matrex gel orange A dye affinity chromatography, and Q Sepharose anion exchange, had a molecular mass of approximately 200 kD and was inhibited by EDTA, EGTA, or 1,10-phenanthroline. The inhibition by EGTA or EDTA could be reversed by Ca2+ but not by mg2+. It was not inhibited by a panel of synthetic and natural protease inhibitors or adsorbed by gelatin-agarose, and it was present in plasmas deficient in proteins involved in coagulation and anticoagulation. The vWF fragments generated by the protease, as mapped by peptide-specific antibodies VP-1 and LJ-7745, were in distinguishable from the natural fragments but distinct from those produced by plasmin. High molecular weight endothelial vWF, after exposure to guanidine HCLI or high shear stress, was cleaved by the protease to smaller forms. These results support the model that endothelial secreted vWF is converted to multimers by a novel plasma metalloproteinase. Although native vWF exists in a conformation relatively resistant to cleavage, an alteration in the conformation by shear stress can lead to enhanced proteolytic susceptibility. This model may explain the decrease in vWF multimer sizes in various clinical conditions.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 708 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3