Loss of Inducible Virus in CD45RA Naive Cells After Human Immunodeficiency Virus-1 Entry Accounts for Preferential Viral Replication in CD45RO Memory Cells

Author:

Woods Toni C.1,Roberts Beverly D.1,Butera Salvatore T.1,Folks Thomas M.1

Affiliation:

1. From the Retrovirus Diseases Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA.

Abstract

AbstractControversy exists concerning the preferential infection and replication of human immunodeficiency virus-1 (HIV-1) within naive (CD45RA+) and memory (CD45RO+) subsets of CD4+ lymphocytes. To explore the susceptibility of these subsets to HIV-1 infection, we purified CD45RA+/CD4+ (RA) and CD45RO+/CD4+ (RO) cells from normal donors and subjected them to a novel monokine activation culture scheme. Following HIV-1 infection and interleukin-2 (IL-2) induction, viral production measured on day 13 was 19-fold greater in RO cultures compared with RA cultures. IL-2–stimulated proliferation in uninfected control cultures was equivalent. To explore the mechanisms by which RA cells were reduced in viral production capacity, RA and RO cells were exposed to HIV-1 followed by treatment with trypsin, and then phytohemagglutinin antigen (PHA)-stimulated at days 4, 7, and 10 postinfection. HIV-1 production in day 4 postinfection RA and RO cultures was analogous, indicating that viral fusion and entry had occurred in both cell types. However, whereas similarly treated day 7 and 10 postinfection RO cultures produced virus, HIV-1 was markedly reduced or lost in the corresponding RA cultures. These results suggest that a temporally labile postfusion HIV-1 complex exists in unstimulated RA cells that requires cellular activation signals beyond that provided by IL-2 alone for productive infection.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3