Primordial germ cells are capable of producing cells of the hematopoietic system in vitro

Author:

Rich IN1

Affiliation:

1. Department of Transfusion Medicine, University of Ulm, Germany.

Abstract

The identity of the cells giving rise to the hematopoietic system in the mouse embryo are unknown. The results presented here strongly suggest that hematopoietic cells are derived from a nonhematopoietic cell population that has been previously thought to give rise to the germ cells. These cells are called primordial germ cells (PGCs) and can be recognized as large cells showing blebbing and pseudopodial extrusions on their surface. They are alkaline phosphatase (AP) positive and possess a stage-specific embryonic antigen (SSEA-1) on their surface. They represent a small pool of cells in the extraembryonic mesoderm at the base of the allantois in late day-6 embryos. Primordial germ cells from 7.5- and 8.5-day visceral yolk sac and embryo proper form AP+ and SSEA-1+ colonies within 5 days when grown on an embryonic fibroblast feeder cell layer in the presence of leukemia inhibitory factor (LIF), stem cell factor (SCF), and interleukin-3 (IL-3). Individual colonies taken from day-5 cultures can be shown to differentiate into erythroid lineage cells in secondary methyl cellulose culture and produce secondary and tertiary PGCs in the presence of LIF, SCF, and IL-3. Cells taken from the region of the allantois and primitive streak can form colonies on hydrophilic Teflon (DuPont, Wilmington, DE) foils precoated with collagen and fibronectin. The cells from these colonies were then shown to form cobblestone areas on irradiated adult bone marrow stromal layers, indicating that the most primitive in vitro hematopoietic stem cell, the cobblestone-area forming cell (CAFC), was present. PGC colonies were grown in methyl cellulose in the presence of LIF, SCF, and IL-3 for 5 days, and the colonies were removed and passaged 3 times on pretreated extracellular matrix hydrophilic Teflon foils. After each passage, the cells were assayed for their differentiation capacity and PGC content. After the last passage, the number of CAFCs was also determined. It was found that, under these conditions, the PGC population expanded more than 400- fold and also contained CAFCs. It is postulated that the PGC represents a totipotent stem cell population capable of producing a variety of different cell types including cells of the hematopoietic system.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3