Granulocyte colony-stimulating factor induction of normal human bone marrow progenitors results in neutrophil-specific gene expression

Author:

Berliner N1,Hsing A1,Graubert T1,Sigurdsson F1,Zain M1,Bruno E1,Hoffman R1

Affiliation:

1. Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510.

Abstract

We have used a combination of hematopoietic growth factors to induce in vitro granulocytic maturation. A fraction of marrow cells enriched for hematopoietic progenitor cells (CD34+, HLA-DR+) was isolated from normal human bone marrow by monoclonal antibody staining and fluorescence-activated cell sorting. Cells were cultured in a suspension system for 3 days in the presence of stem cell factor and interleukin-3 (IL-3), after which granulocyte colony-stimulating factor (G-CSF) was added. Cells were harvested daily and analyzed for phenotypic maturation by morphologic criteria, and total RNA was obtained for analysis of myeloid gene expression. Maturation was observed to progress to the late metamyelocyte and band stage over a period of 10 to 12 days. Neutrophil-specific gene expression was assayed by reverse transcription-polymerase chain reaction (RT-PCR). Induction with G-CSF resulted in sequential expression of primary and secondary granule proteins, with asynchronous expression of primary granule proteins starting from days 1 to 5, and synchronous expression of lactoferrin and transcobalamin I (secondary granule proteins) from days 7 to 8. Interestingly, myeloperoxidase (MPO) mRNA expression was easily detected in both the freshly isolated CD34+, HLA-DR+ cells and cells at all subsequent stages of induction. This suggests that MPO mRNA is expressed very early during neutrophil development, perhaps before the development of significant numbers of phenotypically recognizable granules. This recapitulation of a program of sequential expression of primary and secondary granule protein genes suggests that in vitro marrow culture suspensions to which appropriate growth factors are added can mimic normal granulocytic maturation. This system should provide an important model for the study of neutrophil-specific gene expression.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3