Affiliation:
1. Department of Hygiene, Kyoto Prefectural University of Medicine, Japan.
Abstract
We studied the synergistic effects of stem cell factor (SCF) and other burst-promoting activities (BPAs) such as interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or IL-9 on proliferation of human peripheral blood-derived highly purified progenitors. SCF, IL-3, GM-CSF, and IL-9 showed significant BPA when CD34+HLA-DR+ cells were used as the target population. IL-3 exerted the most potent BPA, and GM-CSF supported approximately 40% to 70% of the erythroid burst-forming units that are responsive to IL-3. SCF and IL-9 showed much weaker BPA than that of IL-3 or GM-CSF. Combinations of IL- 3 with other BPAs did not show synergistic actions supporting erythroid- burst formation. However, GM-CSF showed a significant additive effect with IL-9 or SCF. When CD34+c-kithigh cells were used as the target, SCF showed a much stronger BPA. Also, a distinct additive effect between SCF and IL-3 or GM-CSF on erythrocyte-containing mixed colony formation was observed. On the other hand, when CD34+c-kitlow cells were used as the target, SCF, IL-3, and GM-CSF could express BPA. In contrast, IL-9 alone failed to support erythroid-burst formation. Because CD34+c-kithigh cells weakly expressed CD34 antigen, these cells appeared to be more mature progenitors than CD34+c-kitlow cells. These results suggest that IL-9 acts on more mature progenitors than those of SCF, IL-3, or GM-CSF and that the primary target of SCF is multipotential progenitors at the very early stage of development.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献