Affiliation:
1. From the Herman B Wells Center for Pediatric Research, the Department of Pediatrics (Hematology-Oncology), James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis.
Abstract
AbstractThe X-linked form of chronic granulomatous disease (X-CGD), an inherited deficiency of the respiratory burst oxidase, results from mutations in the X-linked gene for gp91phox, the larger subunit of the oxidase cytochrome b. The goal of this study was to evaluate the impact of retroviral-mediated gene transfer of gp91phox on host defense against Aspergillus fumigatus in a murine model of X-CGD. Retrovirus vectors constructed using the murine stem cell virus (MSCV) backbone were used for gene transfer of the gp91phox cDNA into murine X-CGD bone marrow cells. Transduced cells were transplanted into lethally irradiated syngeneic X-CGD mice. After hematologic recovery, superoxide production, as monitored by the nitroblue tetrazolium (NBT) test, was detected in up to ≈80% of peripheral blood neutrophils for at least 28 to 35 weeks after transplantation. Neutrophil expression of recombinant gp91phox and superoxide production were significantly less than wild-type neutrophils. However, 9 of 9 mice with ≈50% to 80% NBT+ neutrophils after gene transfer did not develop lung disease after respiratory challenge with 150 to 500 A fumigatus spores, doses that produced disease in 16 of 16 control X-CGD mice. In X-CGD mice transplanted with mixtures of wild-type and X-CGD bone marrow, ≥5% wild-type neutrophils were required for protection against A fumigatus challenge. These data suggest that expression of even low levels of recombinant gp91phox can substantially improve phagocyte function in X-CGD, although correction of very small percentage of phagocytes may not be sufficient for protection against A fumigatus.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献