Ex vivo expansion and maturation of peripheral blood CD34+ cells into the myeloid lineage

Author:

Haylock DN1,To LB1,Dowse TL1,Juttner CA1,Simmons PJ1

Affiliation:

1. Leukaemia Research Unit, Hanson Centre for Cancer Research, Adelaide, South Australia.

Abstract

Abstract Hematopoietic reconstitution (HR) after peripheral blood stem cell transplantation is characterized by a delay of 8 and 12 days for recovery to safe levels of neutrophils and platelets even in patients with the most rapid engraftment. We postulate that a further enhancement in the rate of HR may be achieved by transplanting with an expanded postprogenitor cell population that can provide mature functional cells within days of infusion. In this study we investigated the ability of combinations of hematopoietic growth factors (HGF) to generate nascent granulocyte-macrophage colony-forming units (CFU-GM) in a 7-day suspension culture of peripheral blood CD34+ cells. A combination of 6 HGF, ie, interleukin-1 beta (IL-1), IL-3, IL-6, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage- CSF (GM-CSF), and stem cell factor (SCF), was identified as the most potent combination of those tested. Subsequently, large volume suspension cultures of CD34+ cells from the same patients using the same 6-factor combination were established and monitored for 21 days. An exponential rate of nucleated cell production (mean 1,324-fold increase) occurred during culture. CFU-GM production paralleled nucleated cell production until day 10, peaked at day 14 (mean 66-fold increase), and was then maintained until day 21. Cells produced in culture were predominantly neutrophil precursors and developed normally as assessed by morphology, immunophenotype, and superoxide generation. This stroma-free, cytokine-driven culture system can achieve a degree of amplification, which suggests the feasibility of ex vivo culture of hematopoietic progenitor cells as an adjunct to hematopoietic stem cell transplantation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3