Origin of human mast cells: development from transplanted hematopoietic stem cells after allogeneic bone marrow transplantation

Author:

Fodinger M1,Fritsch G1,Winkler K1,Emminger W1,Mitterbauer G1,Gadner H1,Valent P1,Mannhalter C1

Affiliation:

1. Department of Molecular Biology, University of Vienna, Austria.

Abstract

Abstract Although mast cells are hematopoietic cells, little is known about the origin of their precursors in vivo. In this study, the origin (donor v recipient genotype) of human mast cells (MCs) was analyzed in a patient who underwent allogeneic bone marrow transplantation (BMT). The patient presented with secondary acute myeloid leukemia (French-American- British classification, M2) arising from refractory anemia with excess of blast cells and bone marrow (BM) mastocytosis. Transplantation was performed in chemotherapy-induced complete remission. On days 88, 126, 198, and 494 after BMT, mast cells were enriched to homogeneity from bone marrow mononuclear cells (BM MNCs) by cell sorting for CD117+/CD34- cells. Purified mast cell populations were CD117(c-kit)+ (> 95%), CD34- (< 1%), CD3- (< 1%), CD14- (< 1%), and virtually free of contaminating cells as assessed by Giemsa staining. The genotype of MCs was analyzed after amplification by polymerase chain reaction (PCR) of a variable number tandem repeat (VNTR) region within intron 40 of the von Willebrand factor (vWF) gene. Unexpectedly, on days 88 and 126 after BMT, sorted MCs displayed recipient genotype as shown by vWF.VNTR-PCR. However, on days 198 and 494, PCR analysis showed a switch to donor genotype in isolated mast cells. Peripheral blood (PB) and BM MNC as well as highly enriched (sorted) CD3+ T cells (PB, BM), CD4+ helper T cells (PB), CD8+ T cells (PB), CD19+ B cells (PB), CD14+ monocytes (PB, BM), and CD34+ precursor cells (BM) showed donor genotype throughout the observation period. Together, these results provide evidence that human MCs developed in vivo from transplanted hematopoietic stem cells. Engraftment and in vivo differentiation of MCs from early hematopoietic progenitor cells may be a prolonged process.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3