Primitive human hematopoietic cells displaying differential efflux of the rhodamine 123 dye have distinct biological activities

Author:

Uchida N1,Combs J1,Chen S1,Zanjani E1,Hoffman R1,Tsukamoto A1

Affiliation:

1. SyStemix Inc, Palo Alto, CA 94304, USA.

Abstract

Human bone marrow (BM) CD34+ cells were stained with the vital dye, rhodamine 123 (Rh123), and analyzed for their biological properties based on the level of dye retention. Heterogeneous rhodamine staining is seen within the CD34+ population, and the staining patterns differ dramatically between fetal BM (FBM), adult BM (ABM) and mobilized peripheral blood (MPB). Kinetic analysis of the efflux of Rh123 from ABM CD34+ cells showed that efflux of Rh123 was most rapid from the most primitive Thy-1+ subset. The efflux of Rh123 could be inhibited by verapamil, suggesting that rhodamine efflux from primitive hematopoietic cells is primarily due to the P-glycoprotein (P-gp) pump or another intracellular transport system affected by verapamil. When four CD34+ subpopulations were plated onto SyS1 BM stromal cell cocultures after 1 to 2 weeks, only wells plated with CD34+ Thy- 1+Rh123lo (low-level Rh123 retention) or CD34+Thy-1+Rh123mid (mid-level Rh123 retention) cells maintained greater than 50% of cells in an uncommitted CD34+33- stage. CD34+Lin- (lineage-negative) cells were fractionated based on Rh123 dye staining into Rh123hi (high-level Rh123 retention), Rh123mid, and Rh123lo and deposited as single cells into long-term SyS1 BM stromal cell cultures. The Rh123mid fraction had immense early proliferative activity in vitro, but lost the ability to form cobblestone areas after 5 to 6 weeks in culture. In contrast, the Rh123lo fraction proliferated more slowly but sustained long-term in vitro hematopoiesis as evidenced by continued cobblestone area-forming cells (CAFC) activity for at least 6 weeks. The Rh123hi fraction showed a plating efficiency similar to that of the Rh123lo or Rh1123mid fractions but did not extensively proliferative in vitro and did not show evidence of CAFC activity. We predicted from these in vitro results that the Rh123lo subsets possesses long-term engrafting potential. Indeed, on transplantation into the SCID-hu bone assay, all long-term engrafting potential and multilineage differentiation potential resided within the Rh123lo-mid but not Rh123hi subset. Furthermore, human marrow subpopulations derived from chimeric sheep after in utero transplantation with CD34+Thy-1+Lin- cells were reisolated based on Rh123 staining. Again, CD34+Lin- subsets showing Rh123lo-mid had long-term growth in culture, whereas Rh123hiCD34+Lin- cells did not. These results show that, after injection of CD34+Thy- 1+Lin- cells into an in utero microenvironment, primitive CD34+ cells maintain a Rh123 phenotype that correlates with their in vitro CAFC activity. Thus, Rh123 staining is an effective way to define functional subsets of primitive hematopoietic cell populations.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3