Identification of molecular defects in a subject with type I CD36 deficiency

Author:

Kashiwagi H1,Tomiyama Y1,Kosugi S1,Shiraga M1,Lipsky RH1,Kanayama Y1,Kurata Y1,Matsuzawa Y1

Affiliation:

1. Second Department of Internal Medicine, Osaka University Medical School, Japan.

Abstract

Abstract We performed a molecular analysis of a subject whose platelets and monocytes did not express any cell surface CD36 (designated as a type I CD36 deficiency). Amplification of the 5′ half of platelet and monocyte CD36cDNA (corresponding to nucleotide [nt] 191–1009 of the published CD36 cDNA sequence [Oquendo et al, Cell, 58:95, 1989]) showed that two different-sized CD36 cDNAs existed. One cDNA was of predicted normal size, whereas the other was about 150 bp smaller than that predicted for normal CD36 cDNA. Amplification of the 3′ region of CD36 cDNA (nt 962–1714) in this subject showed only normal-sized CD36 cDNA. Cloning and nt sequence analysis of the cDNAs showed that the smaller sized CD36 cDNA had 161-bp deletion (from nt 331 to 491), and a dinucleotide deletion starting at nt position 539. The same dinucleotide deletion was also detected in the normal sized CD36 cDNA. Both deletions caused a frameshift leading to the appearance of a translation stop codon. RNA blot analysis and quantitative assay using the reverse transcription- polymerase chain reaction (RT-PCR) showed that the CD36 transcripts in both platelets and monocytes were greatly reduced. Comparison of the determined cDNA sequences with the genomic DNA sequence for the human CD36 gene showed that the dinucleotide deletion was located in exon 5, and that the 161-bp deletion corresponded to a loss of exon 4. PCR- based analysis using genomic DNA showed that this subject was homozygous for the dinucleotide deletion in exon 5. Except for the dinucleotide deletion, we could not find any abnormalities around exon 3, 4, and 5 including the splice junctions. These results suggested that the deletions in CD36 mRNA were likely to be responsible for instability of the transcripts, and the dinucleotide deletion in exon 5 might affect the splicing of exon 4.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3