A Novel Herpes Vector for the High-Efficiency Transduction of Normal and Malignant Human Hematopoietic Cells

Author:

Dilloo Dagmar1,Rill Donna1,Entwistle Claire1,Boursnell Michael1,Zhong Wanyun1,Holden William1,Holladay Martha1,Inglis Stephen1,Brenner Malcolm1

Affiliation:

1. From the Cell and Gene Therapy Program, St Jude Children's Research Hospital, Memphis, TN; and Cantab Pharmaceuticals Research, Cambridge, UK.

Abstract

AbstractHerpes simplex viruses (HSVs) would offer numerous advantages as vectors for gene transfer, but as yet they have not proved capable of transducing hematopoietic cells. Using a genetically inactivated form of HSV that is restricted to a single cycle of replication (disabled single-cycle virus, [DISC-HSV]), we have transduced normal human hematopoietic progenitor cells and primary leukemia blasts with efficiencies ranging from 80% to 100%, in the absence of growth factors or stromal support. Toxicity was low, with 70% to 100% of cells surviving the transduction process. Peak expression of transferred genes occurred at 24 to 48 hours after transduction with the DISC-HSV vector, declining to near background levels by 14 days. Despite this limitation, sufficient protein is produced by the inserted gene to permit consideration of the vector for applications in which transient expression is adequate. One example is the transfer of immunostimulatory genes, to generate leukemia immunogens. Thus, murine A20 leukemia cells transduced with a DISC-HSV vector encoding granulocyte-macrophage colony-stimulating factor were able to stimulate a potent antitumor response in mice, even against pre-existing leukemia. The exceptional transducing ability of the DISC-HSV vector should therefore facilitate genetic manipulation of normal and malignant human hematopoietic cells for biological and clinical investigation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular therapeutics in hematology: gene therapy;Molecular Hematology 4e;2019-09-20

2. Genetic Manipulation of Hematopoietic Stem Cells;Thomas’ Hematopoietic Cell Transplantation;2016-01-01

3. Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia;Cancer Immunology, Immunotherapy;2011-04-26

4. Gene Therapy and Allergy;Pediatric Allergy: Principles and Practice;2010

5. Immunotherapy of Acute Myeloid Leukemia: Current Approaches;The Oncologist;2009-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3