Effect of blood flow on thrombin generation is dependent on the nature of the thrombogenic surface

Author:

Diquelou A1,Lemozy S1,Dupouy D1,Boneu B1,Sakariassen K1,Cadroy Y1

Affiliation:

1. Laboratoire d'Hematologie, Hopital Purpan, Toulouse, France.

Abstract

Abstract We have investigated the influence of blood flow on thrombin generation, fibrin formation, and fibrin deposition on procoagulant and nonprocoagulant surfaces. Nonanticoagulated human blood was drawn for 5 minutes directly from an antecubital vein over stimulated endothelial cells expressing tissue factor and over human type III collagen fibrils, positioned in parallel-plate perfusion chambers. The shear rates at these surfaces were 50, 650, and 2,600 s-1. Deposition of platelets and fibrin was measured by morphometry. Thrombin and fibrin formation was determined by measuring prothrombin fragments 1 + 2 (F 1 + 2), thrombin-antithrombin III complexes, (T-AT) and fibrinopeptide A (FPA) in blood effluent from the perfusion chamber at the end of the 5- minute perfusion period. On procoagulant endothelial cells, the thrombi were primarily composed of fibrin. The fibrin deposition (81%, 21%, and 2% at 50, 650, and 2,600 s-1, respectively) and plasma levels of F 1 + 2, T-AT and FPA were shear rate dependent and highest at 50 s-1. There was a positive correlation between F 1 + 2 and T-AT and the fibrin deposition (P < .01). In contrast, the collagen surface triggered primarily thrombi that were composed of platelets. The platelet thrombi and plasma levels of F 1 + 2 and T-AT were also dependent on the shear rate, but highest at 650 and 2,600 s-1. F 1 + 2 and T-AT reached the same level as observed with procoagulant endothelial cells at the higher shear rates. There was a positive correlation between F 1 + 2 and T-AT and the platelet thrombus formation (P < .05), confirming the predominant role of platelets in thrombin generation. Thus, thrombin formation is strongly influenced by the blood flow, and this effect depends on the composition of the thrombogenic surface.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3