Epstein-Barr virus modulates de novo protein synthesis in human neutrophils

Author:

Beaulieu AD1,Paquin R1,Gosselin J1

Affiliation:

1. Laboratory of Rheumatology, Centre Hospitalier de l'Universite Laval, Quebec, Canada.

Abstract

Neutrophils and macrophages represent the first line of defense against microbial invaders. However, the role of phagocytes in host response to viral infection is poorly understood. We have previously shown that Epstein-Barr virus (EBV) interacts with human monocytes and modulates cytokine production in this cell type, but its effects on neutrophils are still unknown. In the present study, we investigated the presence of EBV receptor (CR2 or CD21) on neutrophils by cytofluorometry using five different anti-CD21 monoclonal antibodies (MoAbs), as well as fluoroscein isothiocyanate-EBV (FITC-EBV). Whereas no significant amount of neutrophils reacted with anti-CD21 MoAbs, studies with FITC-EBV indicated that viral particles bind to 30% of cells (in some individuals, EBV binds to more than 50% of neutrophils). This interaction is specific as it was completely inhibited by nonconjugated virus or with labeled virus preincubated with neutralizing MoAbs. After EBV treatment, cellular aggregation was observed in neutrophil cultures, an indication that neutrophils were activated. Although EBV did not induce respiratory burst activity in neutrophils, pretreatment with infectious particles enhanced (priming effect) the fMLP-induced O2-release in neutrophils. Instead of restricting our analysis to specific cytokine genes, we investigated the effects of EBV on neutrophil transcriptional events in general. The effect of this virus on de novo synthesis of total cellular RNA was first investigated by measuring the incorporation of [5–3H] uridine into total RNA. The results showed that RNA synthesis in neutrophils was significantly increased (2.3- to 21.3-fold) by EBV compared with the unstimulated controls. Live and UV-inactivated virus markedly induced RNA synthesis, whereas heat-inactivated virus lost this ability. Induction of RNA transcription was EBV specific, as an EBV-neutralizing antiserum abolished this effect. Induction of protein synthesis was also studied by measuring the incorporation of [35S] methionine and [35S] cysteine into secreted and intracellular proteins in neutrophils incubated with EBV. The synthesis of both secreted and cytoplasmic proteins was induced by EBV. One- and two-dimensional gel electrophoresis analysis showed that EBV modulates protein synthesis, because activation of the synthesis of certain proteins was accompanied by the inhibition of others. Interleukin-1 beta (IL-1 beta) and IL-1 receptor antagonist (IL-1Ra) synthesis was found to be induced by EBV. Therefore, modulation of host-response proteins such as IL-1Ra could be one of the many mechanisms by which this virus avoids rejection.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3