Hematopoiesis in mice lacking the entire granulocyte-macrophage colony- stimulating factor/interleukin-3/interleukin-5 functions

Author:

Nishinakamura R1,Miyajima A1,Mee PJ1,Tybulewicz VL1,Murray R1

Affiliation:

1. DNAX Research Institute, Palo Alto, CA 94304–1104, USA.

Abstract

Interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-5 are major hematopoietic cytokines produced by activated T cells and exhibit similar biologic activities by signaling through a common receptor subunit (beta c). Mice lacking beta c show a pulmonary alveolar proteinosis-like disease and reduced numbers of peripheral eosinophils, which are explained by the lack of GM-CSF and IL-5 function, respectively. However, beta c-deficient hematopoietic cells do respond to IL-3 normally, probably through an additional beta subunit of the IL-3 receptor (beta IL3) that is present in the mouse. Thus, almost normal hematopoiesis in beta c-deficient mice may be caused by functional redundancy between IL-3 and GM-CSF. To clarify the role of the entire IL-3/GM-CSF/IL-5 system in hematopoiesis in vivo, we crossed the beta c mutant mice with mice deficient for IL-3 ligand to generate mice lacking the entire IL-3/GM-CSF/IL-5 functions. The double-mutant mice were apparently normal and fertile. The severity of the lung pathology in the beta c/IL-3 double-mutant mice showed normal hemodynamic parameters except for reduced numbers of eosinophils and the lack of eosinophilic response to parasites, which were also found in beta c mutant mice. The immune response of the beta c/IL-3 double-mutant mice to Listeria mono-cytogenes was normal, as was hematopoietic recovery after administration of the cytotoxic drug, 5-fluorouracil. Although it has been believed that IL-3/GM-CSF/IL-5 produced by activated T cells play a major role in expansion of hematopoietic cells in emergency, our results indicate that the entire function of IL-3/GM- CSF/IL-5 is dispensable for hematopoiesis in emergency as well as in the steady state. Thus, there must be an alternative mechanism to produce blood cells in both situations.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 189 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3