Cells expressing human glucocerebrosidase from a retroviral vector repopulate macrophages and central nervous system microglia after murine bone marrow transplantation

Author:

Krall WJ1,Challita PM1,Perlmutter LS1,Skelton DC1,Kohn DB1

Affiliation:

1. Division of Research Immunology and Bone Marrow Transplantation, Childrens Hospital, Los Angeles, CA 90027.

Abstract

Abstract Gaucher disease is an inherited lysosomal storage disease in which the loss in functional activity of glucocerebrosidase (GC) results in the storage of its lipid substrate in cells of the macrophage lineage. A gene therapy approach involving retroviral transduction of autologous bone marrow (BM) followed by transplantation has been recently approved for clinical trial. Amelioration of the disease symptoms may depend on the replacement of diseased macrophages with incoming cells expressing human GC; however, the processes of donor cell engraftment and vector gene expression have not been addressed at the cellular level in relevant tissues. Therefore, we undertook a comprehensive immunohistologic study of macrophage and microglia replacement after murine BM transplantation with retrovirus-marked BM. Serial quantitative PCR analyses were employed to provide an overview of the time course of engraftment of vector-marked cells in a panel of tissues. Following reconstitution of hematopoietic tissues with vector- marked donor cells at early stages, GC+ cells began to infiltrate the liver, lung, brain, and spinal cord by 3 months after transplant. Immunohistochemical analyses of PCR+ tissues using the 8E4 monoclonal antibody specific for human GC revealed that macrophages expressing human GC had partially reconstituted the Mac-1+ population in all tissues in a manner characteristic to each tissue type. In the brain, 20% of the total microglia had been replaced with donor cells expressing GC by 3 to 4 months after transplant. The finding that significant numbers of donor cells expressing a retroviral gene product immigrate to the central nervous system suggests that gene therapy for neuronopathic forms of lysosomal storage diseases as well as antiviral gene therapy for AIDS may be feasible.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3