The tissue-specific transcriptional regulation of the megakaryocytic glycoprotein IIb gene is controlled by interactions between a repressor and positive cis-acting elements

Author:

Prandini MH1,Martin F1,Thevenon D1,Uzan G1

Affiliation:

1. CEA, Laboratoire d'Hematologie, INSERM U217, DBMS, Grenoble, France.

Abstract

Much information on regulation of the transcription of megakaryocytic genes stems from studies on the glycoprotein IIb (GPIIb) gene, an early and specific marker of this lineage. Transcriptional activity is controlled by the association of positive promoter elements corresponding to binding sites for the transcription factor GATA-1 and a member of the Ets family. In the present study, we show that these elements are not directly involved in the control of cell specificity. In contrast, we identified a sequence located between -170 and -73 that exhibited a repressor activity based on an analysis of the transcriptional activity of 5′-deleted GPIIb promoter fragments transfected in the nonhematopoietic HeLa cells. Further analysis of this repressor by substitution mutagenesis of the -139/-63 region showed that bases -120/-116 and -102/-93 were required for full repressor activity. The repressor is able to interact differentially with GPIIb promoter elements active in the megakaryocytic HEL, the erythroid K562, the monocytic U937, or the nonhematopoietic HeLa cell lines, indicating that it controls GPIIb gene tissue specificity. In addition, direct evidence for tissue-specific interaction between this repressor and the GPIIb -598/ -406 enhancer was obtained when these elements were set in the context of a heterologous SV40 promoter. Interestingly, the same repressor element controlling tissue specificity of the GPIIb gene may also control its temporal expression during megakaryocyte differentiation, based on recent evidence obtained by Fong and Santoro (J Biol Chem 269:18441, 1994). Finally, we found that the -120/-116 GPIIb sequence was part of a consensus motif shared by promoters of other megakaryocyte-specific genes, suggesting a common repressor mechanism.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3