Platelet activation and inhibition of malarial cytoadherence by the anti-CD36 IgM monoclonal antibody NL07

Author:

Alessio M1,Greco NJ1,Primo L1,Ghigo D1,Bosia A1,Tandon NN1,Ockenhouse CF1,Jamieson GA1,Malavasi F1

Affiliation:

1. Dipartimento di Genetica, Biologia e Chimica Medica, Universita di Torino, Italy.

Abstract

Abstract The surface glycoprotein CD36 (GPIV) is known to mediate the adhesion of Plasmodium falciparum malaria-infected red blood cells and to be a receptor for extracellular matrix proteins such as collagen and thrombospondin. The murine monoclonal IgM antibody NL07, which is specific for CD36, has now been shown to also be a potent inhibitor of the adhesion of P falciparum malaria-infected red blood cells to C32 melanoma cells. Treatment of platelets with NL07 monoclonal antibody resulted in rapid degranulation, release of ATP and serotonin, increase in [Ca2+]i, and tyrosine phosphorylation of a substrate protein of 130 kD. In about one-half of the experiments, activation with NL07 resulted in the formation of small aggregates of 10 to 30 platelets, whereas in the other half of the experiments, large aggregates were seen similar to those induced by adenosine diphosphate (ADP) and these large aggregates could be converted to the small aggregates by ATP alpha S or by AP-2 or other antibodies against GPIIb and/or IIIa. Microaggregates of 2 to 5 platelets were seen with Glanzmann's platelets that constitutively lack GPIIb/IIIa. Aggregate formation was not seen with heat-treated serum, in the presence of anti C1q antibodies, or when using C5-, C8-, or C9-deficient human sera. Although activation of platelets with purified complement components results in a slow morphologic change without aggregation, involvement of CD36 results in rapid complement-mediated activation leading to formation of small aggregates that is largely independent of GPIIb/IIIa and that, under certain circumstances, proceeds to the formation of large ADP-dependent aggregates.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3