Efficient retrovirus-mediated gene transduction into murine hematopoietic stem cells and long-lasting expression using a Transwell coculture system

Author:

Germeraad WT1,Asami N1,Fujimoto S1,Mazda O1,Katsura Y1

Affiliation:

1. Department of Immunology, Kyoto University, Japan.

Abstract

Abstract The neomycin phosphotransferase (neo) gene was transduced into murine hematopoietic stem cells by culturing a recombinant retrovirus- producing cell line in a Transwell (Costar, Cambridge, MA) (bottomed with a porous membrane) hung into a Dexter-type long-term bone marrow (BM) culture. Gene transduction into stem cells retaining long-term reconstitution ability was successfully performed by using protocols of total 15 to 18 days of culture including establishment of the Dexter culture, transduction, and G418 selection. In the irradiated recipients of these cells, a large majority of the BM, thymus, and spleen cells as well as peripheral blood (PB) leukocytes were of donor origin and the neo gene was present in these organs up to 21 weeks after cell transfer. One third to two thirds of the in vitro colony-forming cells in the BM of the recipient mice were resistant to cultivation with G418. It was further found that the hematopoietic system of secondary recipients given BM cells from a primary recipient mouse was predominated by original donor-type cells. The transduced neo gene was detected in the PB, BM, thymus, and spleen cells of these secondary recipients. These results indicate that our procedure of retroviral vector-mediated gene transfer is highly effective in safely introducing a gene into pluripotent hematopoietic stem cells.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3