Affiliation:
1. Dana-Farber Cancer Institute, Department of Pediatrics, Boston, MA 02115 USA.
Abstract
Recent studies have shown that tumor cells genetically modified by transduction of B7–1, a natural ligand for the T-cell costimulatory molecules CD28 and CTLA-4, are rejected in syngeneic hosts. In these reports, transformed cell lines and drug-selected cells have been used for vaccinations. To determine the effectiveness of B7–1-transduced primary acute myelogenous leukemia (AML) cells on the induction of antitumor immunity, we have studied a murine AML model in which primary AML cells were retrovirally transduced with the murine B7–1 cDNA. A defective retroviral producer clone expressing B7–1 and secreting a high titer of virus was used for infection of AML cells. Unselected transduced AML cells, expressing a high level of B7–1, were used for in vivo vaccinations. Our results show that one intravenous (IV) injection of irradiated B7–1-positive (B7–1+) AML cells can provide long-lasting (5 to 6 months) systemic immunity against subsequent challenge with wild-type AML cells. Furthermore, one exposure to irradiated B7–1+ AML cells results in rejection of leukemia by leukemic mice when the vaccination occurs in the early stages of the disease. The antileukemia immunity is CD8+ T-cell-dependent and B7/CD28-mediated, since in vivo treatment of mice with anti-CD8 monoclonal antibody or CTLA-4 Ig leads to abrogation of the specific antileukemia immune response. These results emphasize that B7–1 vaccines may have therapeutic usefulness for patients with AML.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献