PML protein expression in hematopoietic and acute promyelocytic leukemia cells

Author:

Daniel MT1,Koken M1,Romagne O1,Barbey S1,Bazarbachi A1,Stadler M1,Guillemin MC1,Degos L1,Chomienne C1,de The H1

Affiliation:

1. Laboratoire d'Hematologie, CNRS 43, Centre Hayem, Paris, France.

Abstract

Abstract Acute promyelocytic leukemia (APL) is thought to be caused by the t(15,17) translocation that fuses the PML gene to that of the retinoic acid receptor alpha (RAR alpha) and generates a PML/RAR alpha fusion protein. Yet, paradoxically, APL cells are exquisitely sensitive to retinoic acid (RA), as they terminally differentiate upon RA exposure. In this report, we have examined the expression of PML and PML/RAR alpha in normal and APL cells. By immunofluorescence or immunocytochemistry, we show that PML has a speckled nuclear pattern of expression that contrasts with that of PML/RAR alpha (mostly a micropunctuated nuclear pattern or a cytoplasmic localization). The APL- derived cell line NB4 that expresses both the PML and PML/RAR alpha genes also shows the fine micropunctuated nuclear pattern, suggesting a dominant effect of the fusion protein over the localization of wild- type PML. RA treatment of NB4 cells or clones expressing PML/RAR alpha gradually leads to a PML pattern before apparent morphologic maturation. In 14 untreated APL patients, the PML-reactive proteins were cytoplasmic (by immunocytochemistry) or both cytoplasmic and nuclear with a micropunctuated pattern (by immunofluorescence). Strikingly, in 4 patients, after 1 to 2 weeks of RA therapy, the speckled nuclear PML pattern reappeared concomitant with the onset of differentiation. These results establish that fusion of PML to RAR alpha results in an altered localization of PML that is reverted upon RA treatment. This observation, which highlights the importance of PML, is likely to be a key to unravelling the molecular mechanism of both leukemogenesis and RA-induced differentiation of APL.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3