Vascular cell adhesion molecule-1 is involved in mediating hypoxia- induced sickle red blood cell adherence to endothelium: potential role in sickle cell disease

Author:

Setty BN1,Stuart MJ1

Affiliation:

1. Division of Pediatric Hematology-Oncology, St Christopher's Hospital for Children, Philadelphia, PA 19134–1095, USA.

Abstract

We investigated the effects of hypoxia on red blood cell (RBC)- endothelial cell (EC) adherence and the potential mechanism(s) involved in mediating this effect. We report that hypoxia significantly increased sickle RBC adherence to aortic EC when compared with the normoxia controls. However, hypoxia had no effect on the adherence of normal RBCs. In additional studies, we found that the least dense sickle RBCs containing CD36+ and VLA-4+ reticulocytes were involved in hypoxia-induced adherence. We next evaluated the effects of hypoxia on the expression of EC surface receptors involved in RBC adherence to macrovascular ECs, including vascular cell adhesion molecule-1 (VCAM- 1), intracellular adhesion molecule-1 (ICAM-1), and the vitronectin receptor (VnR). Hypoxia upregulated the expression of both VCAM-1 and ICAM-1, whereas no effect on VnR was noted. Potential involvement of VCAM-1 and ICAM-1 in mediating hypoxia-induced sickle RBC-EC adhesion was next investigated using monoclonal antibodies against these receptors. Whereas anti-VCAM-1 had no effect on basal adherence, it inhibited hypoxia-induced sickle RBC adherence in a concentration- dependent manner, with 50% to 75% inhibition noted at 10 to 60 micrograms/mL antibody (n = 6, P < .05 to P < .01). Anti-ICAM-1 (10 to 60 micrograms/mL, n = 8) had no effect on either basal or hypoxia- induced adherence. As noted in the bovine aortic ECs, hypoxia stimulated the adherence of sickle RBCs to human retinal capillary ECs, and this response appeared to be mediated via mechanisms similar to those observed with macro-endothelium, ie, via the adhesive receptor combination VCAM-1-VLA-4. Our studies show that hypoxia enhances sickle RBC adhesion to both macrovascular and human microvascular ECs via the adhesive receptor VCAM-1. Our findings are of interest because hypoxia is an integral part of the pathophysiology of the vaso-occlusive phenomenon in sickle cell anemia.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3