Altered oncoprotein expression and apoptosis in myelodysplastic syndrome marrow cells

Author:

Rajapaksa R1,Ginzton N1,Rott LS1,Greenberg PL1

Affiliation:

1. Department of Medicine, Stanford University Medical Center, CA, USA.

Abstract

Abstract Ineffective hematopoiesis with associated cytopenias and potential evolution to acute myeloid leukemia (AML) characterize patients with myelodysplastic syndrome (MDS). We evaluated levels of apoptosis and of apoptosis-related oncoproteins (c-Myc, which enhances, and Bcl-2, which diminishes apoptosis) expressed within CD34+ and CD34- marrow cell populations of MDS patients (n = 24) to determine their potential roles in the abnormal hematopoiesis of this disorder. Marrow cells were permeabilized and CD34+ and CD34- cells were separately analyzed by FACS to detect: (1) a subdiploid (sub-G1) DNA population, and (2) expression of Bcl-2 and c-Myc oncoproteins. Within the CD34+ subset, a significantly increased percentage of cells demonstrated apoptotic/sub- G1 DNA content in early (ie. refractory anemia) MDS patients compared with normal individuals and AML patients (mean values: 9.1% > 2.1% > 1.2%). Correlated with these findings, the ratio of expression of c-Myc to Bcl-2 oncoproteins among CD34+ cells was significantly increased for MDS patients compared to those from normal and AML individuals (mean values: 1.6 > 1.2 > 0.9). Bcl-2 and c-Myc oncoprotein levels were maturation stage-dependent, with high levels expressed within CD34+ marrow cells, decreasing markedly with myeloid maturation. Treatment of seven MDS patients with the cytokines granulocyte colony-stimulating factor plus erythropoietin was associated with decreased levels of apoptosis within CD34+ marrow cells and may contribute to the enhanced hematopoiesis in vivo that was shown. These findings are consistent with the hypothesis that altered balance between cell-death (eg, c-Myc) and cell-survival (eg, Bcl-2) programs were associated with the increased degrees of apoptosis present in MDS hematopoietic precursors and may contribute to the ineffective hematopoiesis in this disorder, in contrast to decreased apoptosis and enhanced leukemic cell survival in AML.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3