Selection for Drug Resistance Results in Resistance to Fas-Mediated Apoptosis

Author:

Landowski Terry H.1,Gleason-Guzman Mary C.1,Dalton William S.1

Affiliation:

1. From the Departments of Medicine and Pharmacology & Toxicology, Arizona Cancer Center, University of Arizona, Tucson, AZ.

Abstract

AbstractRecent evidence has supported the hypothesis that chemotherapeutic drugs and radiation induce an apoptotic pathway that requires the active participation of the cell. One pathway of apoptosis in malignant lymphoid cells is mediated by the Fas antigen. We studied the human myeloma (8226) and T-cell leukemia (CEM) cell lines selected for resistance to the anthracenes, doxorubicin or mitoxantrone, by continuous culture in the presence of either agent. We found that these drug-resistant cell lines were also resistant to Fas-mediated apoptosis in a dose-dependent manner. The degree of resistance to Fas-mediated apoptosis correlated directly with the level of resistance to chemotherapeutic drugs. These observations indicate that, as cancer cell lines develop mechanisms of drug resistance, they may also develop mechanisms of resistance to physiologic signals of apoptosis. Two mechanisms of resistance to Fas-mediated apoptosis were observed in these cell lines. One mechanism was associated with a dose-dependent reduction in the surface expression of Fas antigen. Analysis of RNA by reverse transcriptase-polymerase chain reaction assays showed that the reduction of Fas antigen expression occurred at the level of transcription. A second mechanism of drug resistance showed no decrease of Fas antigen expression; however, the apoptotic response was diminished. In this situation, removal of the chemotherapeutic agent resulted in a partial reversion to chemosensitivity and re-expression of the Fas antigen, but these cell lines did not regain the ability to undergo apoptosis in response to cross-linking by anti-Fas antibody. These findings support the hypothesis that apoptosis mediated by both chemotherapeutic agents and physiologic stimuli may share a common downstream effector. The demonstration that selection for drug resistance in hematopoietic cell lines results in a simultaneous resistance to Fas-mediated apoptosis may have clinical implications in the development of strategies for the treatment of resistant disease. Further analysis of the molecular mechanisms of Fas expression and function will facilitate the design of biological response modifying agents for the treatment of malignancy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3