Antiphospholipid antibodies directed against a combination of phospholipids with prothrombin, protein C, or protein S: an explanation for their pathogenic mechanism? [see comments]

Author:

Oosting JD1,Derksen RH1,Bobbink IW1,Hackeng TM1,Bouma BN1,de Groot PG1

Affiliation:

1. Department of Haematology, University Hospital Utrecht, The Netherlands.

Abstract

Abstract Despite many studies on the pathophysiology of antiphospholipid antibodies (aPL), the mechanism by which aPL causes thrombosis has not been established. We have tried to elucidate the paradox between the prolongation of the clotting time of phospholipid-dependent coagulation tests in vitro and the occurrence of thrombosis in vivo. The effect on endothelial cell-mediated prothrombinase activity of 30 IgG fractions, of which 22 prolong the aPTT of normal plasma, was investigated. Only 4 of 22 fractions (18%) inhibited prothrombinase activity when tested on this more physiologic phospholipid surface, indicating that in most patients with aPL the prolongation of clotting tests is predominantly as in vitro phenomenon. It was recently reported that in detection methods for aPL, two plasma proteins, beta 2-glycoprotein I and prothrombin, enhance the binding of aPL to phospholipids. We have studied the specificity of the 4 IgG fractions that inhibit the prothrombinase activity and found that they were directed against a combination of phospholipids and prothrombin. However, the involvement of prothrombin in binding of aPL leading to impaired thrombin generation could still result in both a bleeding and a thrombotic tendency. Therefore, we proposed a new thrombogenic mechanism for aPL in which aPL bind to complexes of phospholipids and coagulation proteins, thereby interfering in different coagulation reactions. We tested this new hypothesis by investigating the effect of IgG from the same 30 patients on the activated protein C (APC)-mediated factor Va inactivation in the absence and presence of protein S. Three IgGs that inhibited APC-mediated factor Va inactivation independent of protein S and 4 additional IgGs that inhibited in the presence of protein S were found. Furthermore, we could specifically adsorb the inhibitory IgG with cardiolipin vesicles to which APC with or without protein S was bound. In conclusion, these results suggest that subpopulations of aPL exist that are directed to complexes of phospholipids and different plasma proteins. The identity of the plasma proteins involved in the binding of aPL might determine which pathogenic mechanism causes thrombosis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 349 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3