Human dendritic cell differentiation pathway from CD34+ hematopoietic precursor cells

Author:

Rosenzwajg M1,Canque B1,Gluckman JC1

Affiliation:

1. Laboratoire de Biologie et Genetiques des Deficits Immunitaires, faculte de Medecine, Paris, France.

Abstract

The most effective antigen-presenting cells for T lymphocytes are dendritic cells (DCs), the differentiation pathway of which, however, is incompletely characterized. We examined here how DCs differentiated from human cord blood CD34+ progenitor cells cultured with granulocyte- macrophage colony-stimulating factor, tumor necrosis factor-alpha, and stem cell factor. After 5 days, 2 of 3 nonadherent cells were CD13hiHLA- DRhiCD4+, half of them were also CD14+, and < or = 10% were CD1a+. When day-5 sorted CD13hiCD1a- and CD13lo cells were further cultured, CD1a+ cells appeared in the already CD13hi population, whereas CD13hi cells, a minority of which rapidly became CD1a+, emerged from the CD13lo population. By day 12, still 66% of bulk cells in suspension were CD13hi, most of which displayed high forward and side scatters of large granular cells. Half of CD13hi cells were CD1a+. All CD13hi cells expressed to the same extent DR, CD4, costimulatory and adhesion molecules, and various amounts of CD14. CD1a+ cells stimulated allogeneic lymphocytes more than CD13hiCD1a- cells and, although they were CD14+, both cell types were nonspecific esterase-negative nonphagocytic cells and were stronger mixed leukocyte reaction stimulators than were their macrophage counterparts. Eventually, the percentage of CD1a+ cells decreased. However, typical CD1a+ DCs still emerged in culture of sorted day-12 CD13hiCD1a- cells, and adding interleukin-4 to bulk cultures at that time led to the persistence of the CD1a+ population while diminishing CD14 expression. Thus, this system results first in the differentiation of CD13hi precursors that strongly express DR and CD4, from which more mature CD1a+ DCs continuously differentiate all along the culture period.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3