Concomitant mobilization of plasma cells and hematopoietic progenitors into peripheral blood of multiple myeloma patients: positive selection and transplantation of enriched CD34+ cells to remove circulating tumor cells

Author:

Lemoli RM1,Fortuna A1,Motta MR1,Rizzi S1,Giudice V1,Nannetti A1,Martinelli G1,Cavo M1,Amabile M1,Mangianti S1,Fogli M1,Conte R1,Tura S1

Affiliation:

1. Institute of Hematology, L. & A. Seragnoli, University of Bologna and Immunohematology Service, Italy.

Abstract

One advantage of the use of peripheral blood stem cells (PBSCs) over autologous bone marrow would be a reduced risk of tumor cell contamination. However, the level of neoplastic cells in the PB of multiple myeloma (MM) patients after mobilization protocols is poorly investigated. In this study, we evaluated PB samples from 27 pretreated MM patients after the administration of high dose cyclophosphamide (7 g/m2 or 4 g/m2) and granulocyte-colony stimulating factor for the detection of myeloma cells as well as hematopoietic progenitors. Plasma cells containing intracytoplasmic lg were counted by microscope immunofluorescence after incubation with appropriate antisera directed against light- and heavy-chain lg. Moreover, flow cytometry studies were performed to determine the presence of malignant B-lineage elements by using monoclonal antibodies against the CD19 antigen and the monotypic light chain. Before initiation of PBSC mobilization, circulating plasma cells were detected in all MM patients in a percentage ranging from 0.1% to 1.8% of the mononuclear cell fraction (mean value, 0.7% +/- 0.4% SD). In these patients, a higher absolute number of PB neoplastic cells was detected after chemotherapy and granulocyte colony-stimulating factor. Kinetic analysis showed a pattern of tumor cell mobilization similar to that of normal hematopoietic progenitors with a maximum peak falling within the optimal time period for the collection of PBSCs. The absolute number of plasma cells showed a 10 to 50-fold increase as compared with the baseline value. Apheresis products contained 0.7% +/- 0.2% SD of myeloma cells (range, 0.2% to 2.7%). Twenty-three MM patients were submitted to PBSC collection. In 10 patients, circulating hematopoietic CD34+ cells were highly enriched by avidin-biotin immunoabsorption, were cryopreserved, and used to reconstitute bone marrow function after myeloablative therapy. The median purity of the enriched CD34+ cell population was 89.5% (range, 51% to 94%), with a 75-fold increase as compared with the pretreatment samples. The median overall recovery of CD34+ cells and colony-forming unit-granulocyte-macrophage was 58% (range, 33% to 95%) and 45% (range, 7% to 100%), respectively. Positive selection of CD34+ cells resulted in 2.5- to 3-log depletion of plasma cells and CD19+ B-lineage cells as determined by immunofluorescence studies, although DNA analysis of CDR III region of IgH gene showed the persistence of minimal residual disease in 5 of 6 patient samples studied. Myeloma patients were reinfused with enriched CD34+ cells after myeloablative therapy consisting of total body irradiation (1,000 cGy) and highdose melphalan (140 mg/m2). They received a median of 4 x 10(6) CD34+ cells/kg and showed a rapid reconstitution of hematopoiesis; the median time to 0.5 x 10(9) neutrophils and to 20 and 50 x 10(9) platelets per liter of PB was 10, 11, and 12 days, respectively. These results, as well as other clinically significant parameters, did not significantly differ from those of patients (n = 13) receiving unmanipulated PBSCs after the same pretransplant conditioning regimen. In summary, our data show the concomitant mobilization of tumor cells and hematopoietic progenitors in the PB of MM patients. Positive selection of CD34+ cells reduces the contamination of myeloma cells from the apheresis products up to 3-log and provides a cell suspension capable of restoring a normal hematopoiesis after a total body irradiation-containing conditioning regimen.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3