Erythroid failure in Diamond-Blackfan anemia is characterized by apoptosis

Author:

Perdahl EB1,Naprstek BL1,Wallace WC1,Lipton JM1

Affiliation:

1. Jack and Lucy Clark Department of Pediatrics, Mount Sinai School of Medicine, New York, NY 10029.

Abstract

Abstract Programmed cell death, also known as apoptosis, is frequently initiated when cells are deprived of specific trophic factors. To investigate if accelerated apoptosis contributes to the pathogenesis of Diamond- Blackfan anemia (DBA), a rare pure red blood cell aplasia of childhood, we studied the effect of erythropoietin (epo) deprivation on erythroid progenitors and precursors from the bone marrow of DBA patients as compared with hematologically normal controls. Apoptosis in response to epo deprivation was evaluated by enumeration of colony-forming unit- erythroid (CFU-E)- and burst-forming unit-erythroid (BFU-E)-derived colonies in plasma clot semisolid culture and by the identification of typical DNA oligosomes by gel electrophoresis from marrow mononuclear cells in liquid culture. In all DBA patients there was a marked decrease in CFU-E- and BFU-E-derived colony formation compared with normal controls at comparable time points of epo deprivation, with a complete loss of CFU-E-derived colonies in semisolid culture by 9 hours of epo deprivation versus 48 hours in controls. The BFU-E-derived colony response to epo deprivation displayed a similar pattern of decrement. Apoptotic changes assessed by the presence of characteristic DNA fragmentation began in the absence of epo deprivation and were readily detected within 3 hours of epo deprivation in DBA cultures versus 9 hours in controls. We conclude that DBA is characterized by accelerated apoptosis as measured by the loss of erythroid progenitor clonogenicity and increased progenitor and precursor DNA fragmentation leading to the formation of characteristic oligosomes, consistent with an intrinsic erythroid-progenitor defect in which increased sensitivity to epo deprivation results in erythroid failure.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3