Affiliation:
1. MRC Molecular Haematology Unit, John Radcliffe Hospital, Headington, Oxford, UK.
Abstract
A Bangladeshi family is described in which the genes for both hemoglobin E (Hb E) and pyrimidine 5′ nucleotidase deficiency are segregating. An individual homozygous for both these conditions has a severe hemolytic anemia, whereas family members who are homozygous for Hb E are asymptomatic and those homozygous for pyrimidine 5′ nucleotidase deficiency have the mild hemolytic anemia that is characteristic of this disorder. Globin-chain synthesis experiments have shown that the mechanism underlying the interaction between these two genotypes is a marked decrease in the stability of Hb E in pyrimidine 5′ nucleotidase-deficient red blood cells (RBCs). It has also been found that in the enzyme-deficient RBCs in which Hb E is highly unstable, free alpha-chains, though not beta E-chains, acoumulate on the membrane. In view of the increasing evidence that the hemolysis associated with pyrimidine 5′ nucleotidase deficiency results not only from an increase in the level of erythrocyte pyrimidines, but also from inhibition of the hexose monophosphate shunt activity in young erythrocytes, it is likely that the marked instability of Hb E in the enzyme-deficient cells results from oxidant damage acting on a mildly unstable Hb variant. These observations may have important implications for the better understanding of the pathophysiology of Hb E/beta-thalassemia, globally the commonest important form of thalassemia.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献